

60 Martin Lane, Elk Grove Village, Illinois 60007 Telephone (630) 595-1111 ♦ Fax (630) 595-1110

June 29, 2023

CGMT Project No.: 23E0330

Mr. Wadee Rafati, P.E. Gewalt Hamilton Associates, Inc. 625 Forest Edge Drive Vernon Hills, Illinois 60061

RE: Soils Laboratory Testing Willow Road Flood Control Project Willow Road and Owen Court – Prospect Heights, Illinois 60070

Dear Mr. Rafati:

Construction & Geotechnical Material Testing, Inc. (CGMT) is pleased to provide you the test results for the limited environmental screening for on-site soil at the project site for contamination of soil with other clean construction or demolition debris (CCDD) in accordance with Section 22.51(f)(2)(B) of the Environmental Protection Act [415 ILCS 5/22.51(f)(2)(B)].

CGMT understands that the spoils from your proposed excavation activities during the construction at the above referenced project in Prospect Heights, Illinois will be hauled off site. To evaluate the soils, CGMT performed a limited soil sampling and testing analysis.

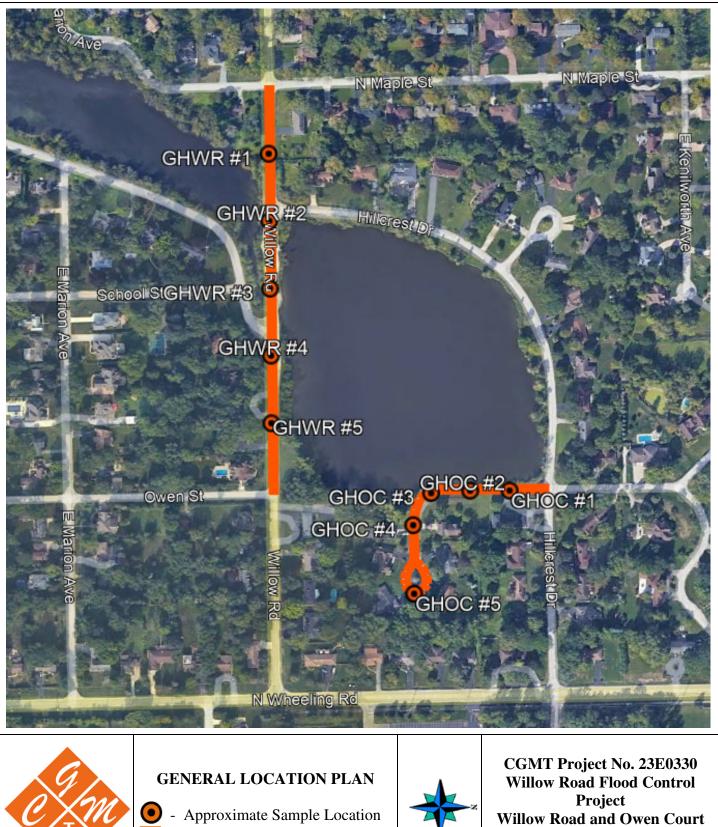
In general, the material sampled consisted of brown and/or gray silty clay loam soils. Due to the similar soils encountered to the approximate depth of 2 feet below ground surface, CGMT collected ten (10) independent grab samples. The attached location map depicts the approximate locations of the samples.

CGMT obtained the soil samples of on-site materials readily accessible to a hand auger. The soil samples were sealed in containers and returned to our laboratory subcontractor to perform laboratory testing. The samples were tested for the following parameters:

• pH

Based on the test results, in general, the soil samples exhibited an absence of detections for most target analytes and detect values below the threshold values for each of the items listed above when compared to Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regular Fill Operations within a populated area and at pH range of 6.25 to 9.0. Based on review of the above mentioned target list, the soils appear acceptable for disposal.

It should be noted that CGMT acquired the samples from readily accessible areas. If, during construction, soils that are stained and/or exhibit odors are encountered, removal operations should be immediately suspended and additional sampling and testing should be performed prior to resuming removal operations. Please note that CCDD/UFSO facilities screen each load with a PID, which will determine the final acceptance of individual loads, regardless of the analytical results.


We look forward to our work with you on this project and future projects.

Respectfully Submitted,

CONSTRUCTION AND GEOTECHNICAL MATERIAL TESTING, INC.

Pratik K. Patel, P.E. Vice President

Attachments:	Location Map
	IEPA Form LPC-662
	Laboratory Test Results

- Acceptable CCDD Material

Prospect Heights, Cook County, Illinois 60070

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Source Site Certification by Owner or Operator for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-662

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by source site owners and operators to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1) (A), that soil (i) was removed from a site that is not potentially impacted property and is presumed to be uncontaminated soil and (ii) is within a pH range of 6.25 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location	of the source of the un	contaminated soil)		
Project Name: Willow	Road Flood Control Pro	oject	Office Phone Nu	mber, if available:	
Physical Site Location	(Street, Road): Willow	Road and Owen	Court		
City: Prospect Height	s State: <u>IL</u>	Zip Code: 6007	0	County: Will	
Township: Wheeling					
Lat/Long of approxima	te center of site in deci	mal degrees (DD.	ddddd) to five decimal p	laces (e.g., 40.67890,	-90.12345):
Latitude: <u>42.10251</u>	Longitude: - 8	7.93193	_		
(grees) (· g data were determine	0	5)		
•	•				
e e :	terpolation O Photo) Survey () Other		
Google Earth			DOW		
IEPA Site Number(s),			BOW:	BOA:	
Approximate Start Dat	(_ Approximate End Dat	te (mm/dd/yyyy):	
Estimated Volume of o	debris (cu. Yd.):				
II. Owner/Operato	or Information for	Source Site			
Site	e Owner		Si	te Operator	
Name:	City of Pr	ospect Heights	Name:		
Street Address:	8 N.	Elmhurst Road	Street Address:		
PO Box:			PO Box:		
City:	Prospect Heights	State: IL	City:		State:
Zip Code:	60070 Phone:		Zip Code:	Phone:	
Contact:			Contact:		
Email, if available:			Email, if available:		

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Source Site Certification

III. Descriptions of Current and Past Uses of Source Site

Describe the current and past uses of the site and nearby properties.* Attach additional information as needed. The description must take into account, at a minimum, the following for the source site and for nearby property: (1) use of the properties for commercial or industrial purposes; (2) the use, storage or disposal of chemical or petroleum products in individual containers greater than 5 gallons or collectively more than 50 gallons; (3) the current or past presence of any storage tanks (above ground or underground); (4) any waste storage, treatment or disposal at the properties; (5) any reported releases or any environmental cleanup or removal of contaminants; (6) any environmental liens or governmental notification of environmental violations; (7) any contamination in a well that exceeds the Board's groundwater quality standards; (8) the use, storage, or disposal of transformers or capacitors manufactured before 1979; and (9) any fill dirt brought to the properties from an unknown source or site.

Number of pages attached: 0

A site investigation concluded the site was historically farmland with low probabilities of being environmental concerns. Based on the low probability of environmental concerns, the determination was made that non impacted pH sampling of the project site was necessary.

*The description must be sufficient to demonstrate that the source site is not potentially impacted property, thereby allowing the source site owner or operator to provide this certification.

IV. Soil pH Testing Results

Describe the results of soil pH testing showing that the soil pH is within the range of 6.25 to 9.0 and attach any supporting documentation.

Number of pages attached: 6

Ten (10) samples were collected and tested for pH. The pH results of the samples ranged from 8.06 to 8.87 which are within the accepted pH range of 6.25 to 9.0 for CCDD or USFO disposal.

V. Source Site Owner, Operator or Authorized Representative's Certification Statement and Signature

In accordance with the Illinois Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 Ill. Adm. Code 1100.205(a), I <u>Wadee Rafati, P.E.</u> (owner, operator or authorized representataive of source site) certify that this site is not a potentially impacted property and the soil is presumed to be uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. I further certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. Additionally, I certify that I am either the site owner or operator or a duly authorized representative of the site owner or site operator and am authorized to sign this form. Furthermore, I certify that all information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

⊖ Owner		
Operator	Operator's Duly Authorized Representative	
Wadee Rafati, P.E.	Jun 29, 2023	
Printed Name	Date	

Signature

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

June 29, 2023

Mr. Blake Sloan CGMT, INC. 60 Martin Lane Elk Grove Village, IL 60007

Project ID: 23E0330, Gewalt Hamilton Associates, Inc First Environmental File ID: 23-5367 Date Received: June 23, 2023

Dear Mr. Blake Sloan:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number:

1002922023-10: effective 03/07/2023 through 02/28/2024.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200.

Sincerely,

Neal Cleghorn Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

CGMT, INC.

Lab File ID: 23-5367

Date Received: June 23, 2023

Project ID: 23E0330, Gewalt Hamilton Associates, Inc

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The results in this report apply to the samples in the following table:

Laboratory Sample ID	Client Sample Identifier	Date/Time	Collected
23-5367-001	GHWR #1	06/22/23	10:15
23-5367-002	GHWR #2	06/22/23	10:30
23-5367-003	GHWR #3	06/22/23	10:45
23-5367-004	GHWR #4	06/22/23	11:00
23-5367-005	GHWR #5	06/22/23	11:15
23-5367-006	GHOC #1	06/22/23	11:30
23-5367-007	GHOC #2	06/22/23	11:45
23-5367-008	GHOC #3	06/22/23	12:00
23-5367-009	GHOC #4	06/22/23	12:15
23-5367-010	GHOC #5	06/22/23	12:30

Sample Batch Comments:

Sample acceptance criteria were met.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

CGMT, INC.

Lab File ID: 23-5367

Date Received: June 23, 2023

Project ID: 23E0330, Gewalt Hamilton Associates, Inc

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The following is a definition of flags that may be used in this report:

Flag	Description	Flag	Description	
A	Method holding time is 15 minutes from collection. Lab an	alysis	was performed as soon as possible.	
В			LCS recovery outside control limits.	
<	Analyte not detected at or above the reporting limit.	М	MS recovery outside control limits; LCS acceptable.	
С	Sample received in an improper container for this test.	Р	Chemical preservation pH adjusted in lab.	
D	Surrogates diluted out; recovery not available.	Q	Result was determined by a GC/MS database search.	
Е	Estimated result; concentration exceeds calibration range.	S	Analysis was subcontracted to another laboratory.	
G	Surrogate recovery outside control limits.	Т	Result is less than three times the MDL value.	
Н	Analysis or extraction holding time exceeded.	W	Reporting limit elevated due to sample matrix.	
Ι	ICVS % rec outside 95-105% but within 90-110%			
J	Estimated result; concentration is less than routine RL but greater than MDL.	N	Analyte is not part of our NELAC accreditation or accreditation may not be available for this parameter.	
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	ND	Analyte was not detected using a library search routine. No calibration standard was analyzed.	

Laboratories, Inc.IL ELAP / NELAC Accreditation # 1002921600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID:				Date Received: 06/23/23 Date Reported: 06/29/23			
				Result	R.L.	Units	Flags
Lab No:	Sample ID:	Analyte		Kesun			1 1465
рН @ 25°С, 1	:2	Method	: 9045D				
23-5367-001	GHWR #1 06/29/23 10:48		Date Collected: 06/22/2	3 Tim	e Collected:	10:15	
Analysis Date:	00/29/23 10.48	рН @ 25°С, 1	:2	8.26		Units	
		phi (69 20 0, 2	Date Collected: 06/22/2		e Collected:	10.30	
23-5367-002 Analysis Date:	GHWR #2 06/29/23 10:48	ΔM	Date Confected. 00/22/2		le concettea.	10.50	
Analysis Date:	00/23/23 10.40	рН @ 25°С, 1	:2	8.30		Units	
23-5367-003	GHWR #3		Date Collected: 06/22/2	3 Tim	e Collected:	10:45	
Analysis Date:	06/29/23 10:48	AM					
		pH @ 25°C, 1	:2	8.29		Units	
23-5367-004	GHWR #4		Date Collected: 06/22/2	.3 Tim	ne Collected:	11:00	
Analysis Date:	06/29/23 10:48	AM					
		рН @ 25°С, 1	:2	8.06		Units	
23-5367-005	GHWR #5		Date Collected: 06/22/2	3 Tim	ne Collected:	11:15	
Analysis Date:	06/29/23 10:48					TT • 4	
		рН @ 25°С, 1	:2	8.74		Units	
23-5367-006	GHOC #1		Date Collected: 06/22/2	23 Tin	ne Collected:	11:30	
Analysis Date:	06/29/23 10:48			0.04		T T	
*********		рН @ 25°С, 1	:2	8.86		Units	0.00000000
23-5367-007	GHOC #2		Date Collected: 06/22/2	23 Tin	ne Collected:	11:45	
Analysis Date:	06/29/23 10:48			0.22		*****	
		pH @ 25°C, 1	.:2	8.33		Units	
23-5367-008	GHOC #3		Date Collected: 06/22/2	23 Tin	ne Collected:	12:00	
Analysis Date:	06/29/23 10:48			0.07		Theite	
	n olon na star ta	pH @ 25°C, 1	l:2	8.86	قيبد معاويته	Units	
23-5367-009	GHOC #4		Date Collected: 06/22/2	23 Tin	ne Collected:	12:15	
Analysis Date:	06/29/23 10:48			0.07		Units	
		рН @ 25°С, 1	بالاستقاديين بالتبيية وتتبارد				i en
23-5367-010	GHOC #5		Date Collected: 06/22/2	23 Tin	ne Collected:	12:30	
Analysis Date:	06/29/23 10:48			0.05		Units	
		рН @ 25°С, 1	[:2	8.25		UIIIts	

First	CHAIN OF CUSTODY RECORD
Environmental Laboratories, Inc.	Company Name: CONT, INC.
First Environmental Laboratories	CANE
1600 Shore Road, Suite D Naperville, Illinois 60563	Phone: SOS -IIII e-mail:
Phone: (630) 778-1200 • Fax: (630) 778-1253 E-mail: firstinfo@firstenv.com • www.firstenv.com IEPA Certification #100292	ed By: RS
Project ID: PRUSPECT HERAHTS, ILLINOIS	INOLS BY BE
P.O.# 7360330	
	10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×
ple Description	Matrix (((Comments Lab I.D.
6/22/23 GHUR #1	S × 23-5367-001
IS MA	
010:30 mm 67:01 4	
$1^{\circ} \rightarrow 18$	S X -063
010:15 m	
- Charles	
6/22/23 GMMP-#5	580- S80-
2 2 2 2	
C 11:30 pm	
	LAB COURIER USE ONLY:
2: 0.1-6ºC YesNoºC Irs. of collection:	Sample Refrigerated: Yest No Program: TACO/SRP CCDD NPDES LUST SDWA
Notes and Special Instructions: * (SORY)	WW-Wastewater GW-Groundwater WIPE-Wipe O-Other
Relinquished By: Jenny Wall DaterTime.	6/23/23 Orliged By: Can San Charlestime 6/23/23 09/3
Relinquished By: Date/Time.	Received By: Date/Time
Rev. 6/19	

Received By: Received By: Date/Time Date/Time Date/Time	Relinquished By: PaterTime DaterTime
stor ma the Stand Classes	2 H C
	Notes and Special Instructions:
Refrigerator Temperature: T °C *Matrix Code Key: S-Soil SL-Sludge DW-Drinking Water WW-Wastewater GW-Groundwater WIPE-Wipe O-Other	
St No	_No°C
-010-	6/22/22, CHIOC #S S
	6/22/23 GHOC #4 S
-00K	6 12:02 SHOC #3
× × × × × × × × × × × × × × × × × × ×	B11:45 m GHUC # C
Comments Lab I.D.	in Sa
Parame	P.O.# 23E0330
() () () () () () () () () ()	Project ID: PROSPECT HEIGHTS, IULINOIS
Sampled By: BS	E-mail: firstinfo@firstenv.com • www.firstenv.com IEPA Certification #100292
- 11/1 e-mail:	First Environmental Laboratories 1600 Shore Road, Suite D Naperville, Illinois 60563 Phone: (630) 778-1200 • Fax: (630) 778-1233
CANT INC.	Laboratories, Inc.
CHAIN OF CUSTODY RECORD	

Construction & Geotechnical Material Testing, Inc.

60 Martin Lane, Elk Grove Village, Illinois 60007 Telephone (630) 595-1111 + Fax (630) 595-1110

July 14, 2023

CGMT Project No.: 23E0330

Mr. Wadee Rafati, P.E. Gewalt Hamilton Associates, Inc. 625 Forest Edge Drive Vernon Hills, Illinois 60061

RE: Limited Environmental Screening and Soil Laboratory Testing Willow Road Flood Control Project W. Palatine Road – Prospect Heights, Illinois 60070

Dear Mr. Rafati:

Construction & Geotechnical Material Testing, Inc. (CGMT) is pleased to provide you the test results for the limited environmental screening for on-site soil at the project site for contamination of soil with other clean construction or demolition debris (CCDD) in accordance with Section 22.51(f)(2)(B) of the Environmental Protection Act [415 ILCS 5/22.51(f)(2)(B)].

CGMT understands that the spoils from your proposed excavation activities during the construction at the above referenced project in Prospect Heights, Illinois will be hauled off site. To evaluate the soils, CGMT performed a limited soil sampling and testing analysis.

In general, the material sampled consisted of brown and/or gray silty clay loam soils. Due to the similar soils encountered to the approximate depth of 5 feet below ground surface, CGMT collected three (3) independent grab samples. The attached location map depicts the approximate locations of the samples.

CGMT obtained the soil samples of on-site materials readily accessible to a hand auger. The soil samples were sealed in containers and returned to our laboratory subcontractor to perform laboratory testing. The samples were tested for the following parameters:

- VOCs
- SVOCs
- PCB's
- Pesticides
- RCRA Metals
- TCLP Chromium
- Cyanide; and
- pH

Based on the test results, in general, the soil samples exhibited an absence of detections for most target analytes and detect values below the threshold values for each of the items listed above when compared to Maximum Allowable Concentrations of Chemical Constituents in Uncontaminated Soil Used as Fill Material at Regular Fill Operations within a populated area and at pH range of 6.25 to 9.0. Based on review of the above mentioned target list, the soils appear acceptable for disposal.

It should be noted that CGMT acquired the samples from readily accessible areas. If, during construction, soils that are stained and/or exhibit odors are encountered, removal operations should be immediately suspended and additional sampling and testing should be performed prior to resuming removal operations. Please note that CCDD/UFSO facilities screen each load with a PID, which will determine the final acceptance of individual loads, regardless of the analytical results.

We look forward to our work with you on this project and future projects.

Respectfully Submitted,

CONSTRUCTION AND GEOTECHNICAL MATERIAL TESTING, INC.

Pratik K. Patel, P.E. Vice President

Attachments: Location Maps IEPA Form LPC-663 Laboratory Test Results

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Uncontaminated Soil Certification

by Licensed Professional Engineer or Licensed Professional Geologist for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-663

Revised in accordance with 35 III. Adm. Code 1100, as amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by professional engineers and professional geologists to certify, pursuant to 35 III. Adm. Code 1100.205(a)(1)(B), that soil (i) is uncontaminated soil and (ii) is within a pH range of 6.26 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris (CCDD) fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location	of the source of the uncontaminate	ed soil)	
Project Name: Willow Road Flood Control Project		Office F	hone Number, if available:
Physical Site Location	n (address, including number and s	treet):	
W. Palatine Road			
City: Prospect	Heights State: IL	Zip Code: 6	0070
County: Cook	Township:	Wheeling	
Lat/Long of approximation	ate center of site in decimal degree	s (DD.ddddd) to five o	decimal places (e.g., 40.67890, -90.12345):
Latitude: <u>42.11066</u>	Longitude: • 87.94344		
(Decimal D	egrees) (-Decimal D	egrees)	
Identify how the lat/lo	ng data were determined:		
🔿 GPS 🕢 Map I	nterpolation 🔘 Photo Interpolatio	on 🔿 Survey 🔿 🤇	Other
Google Earth			
IEPA Site Number(s),	if assigned: BOL:	BOW:	BOA:
Approximate Start Da	ite (mm/dd/yyyy):	Approximate	e End Date (mm/dd/yyyy):
Estimated Volume of	debris (cu. Yd.):		
II. Owner/Operat	or Information for Source S		
Site Owner		Site Operato	ſ
Name:	City of Prospect Heig	ghts Na	ime:

name		ospect neights	Name.	
Street Address:	8 N.	Elmhurst Road	Street Address:	
PO Box:			PO Box:	
City:	Prospect Heights	State: IL	City:	State:
Zip Code:	60070 Phone:		Zip Code:	Phone:
Contact:			Contact:	
Email, if available:			Email, if available:	

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Uncontaminated Soil Certification

III. Basis for Certification and Attachments

For each item listed below, reference the attachments to this form that provide the required information.

a. A Description of the soil sample points and how they were determined to be sufficient in number and appropriately located 35 III. Adm. Code 1100.610(a)]:

CGMT performed a limited exploration to evaluate on-site condition and potential PIPs. Due to the similar soils, brown and/or gray silty clay loam and anticipated quantity of excavation, three (3) soil samples were collected for the indicator contaminants associated with the identified PIPs. An attached location map indicates the approximate locations of the samples.

b. Analytical soil testing results to show that soil chemical constituents comply with the maximum allowable concentrations established pursuant to 35 III. Adm. Code Part 1100, Subpart F and that the soil pH is within the range of 6.25 to 9.0,including the documentation of chain of custody control, a copy of the lab analysis; the accreditation status of the laboratory performing the analysis; and certification by an authorized agent of the laboratory that the analysis has been performed in accordance with the Agency's rules for the accreditation of environmental and the scope of the accreditation [35 III. Adm. Code 1100.201 (g), 1100.205(a), 1100.610]:

See attached cover sheet for testing and analysis process.

IV. Certification Statement, Signature and Seal of Licensed Professional Engineer or Licensed Professional Geologist

I. Pratik K. Patel, P.E. (name of licensed professional engineer or geologist) certify under penalty of law that the information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete. In accordance with the Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 III. Adm. Code 1100.205(a), I certify that the soil from this site is uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. In addition, I certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. All necessary documentation is attached.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Company Name:	Construction & Geotec	nnical Material Te	sting, Inc.	
Street Address:	60 Martin Lane			
City:	Elk Grove Village	State: IL	Zip Code: 60007	
Phone:	630.595.1111			
Pratik K. Patel, P.E.				
Printed Name: Licensed Professional Licensed Professional		<u> </u>	7-14-23 Date:	− 062 − 062 ENGINEER ENGINEER
			P.	E or L.P.G. Seal:

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

July 06, 2023

Mr. Blake Sloan CGMT, INC. 60 Martin Lane Elk Grove Village, IL 60007

Project ID: 23E0331, Gewalt Hamilton Associates, Inc First Environmental File ID: 23-5368 Date Received: June 23, 2023

Dear Mr. Blake Sloan:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number:

1002922023-10: effective 03/07/2023 through 02/28/2024.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200.

Sincerely,

Ryan Gerrick Project Manager

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

CGMT, INC.

Lab File ID: 23-5368

Project ID: 23E0331, Gewalt Hamilton Associates, Inc

Date Received: June 23, 2023

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The results in this report apply to the samples in the following table:

Laboratory Sample ID	Client Sample Identifier	Date/Time Collected
23-5368-001	GHAW #1	6/22/2023 8:00
23-5368-002	GHAW #2	6/22/2023 9:00
23-5368-003	GHAW #3	6/22/2023 10:00

Sample Batch Comments:

Sample acceptance criteria were met.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

CGMT, INC.

Lab File ID: 23-5368

Date Received: June 23, 2023

Project ID: 23E0331, Gewalt Hamilton Associates, Inc

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The following is a definition of flags that may be used in this report:

Flag	Description	Flag	Description
A	Method holding time is 15 minutes from collection. Lab an	alysis	was performed as soon as possible.
В	Analyte was found in the method blank.	L	LCS recovery outside control limits.
<	Analyte not detected at or above the reporting limit.	М	MS recovery outside control limits; LCS acceptable.
С	Sample received in an improper container for this test.	Р	Chemical preservation pH adjusted in lab.
D	Surrogates diluted out; recovery not available.	Q	Result was determined by a GC/MS database search.
Е	Estimated result; concentration exceeds calibration range.	S	Analysis was subcontracted to another laboratory.
G	Surrogate recovery outside control limits.	Т	Result is less than three times the MDL value.
Н	Analysis or extraction holding time exceeded.	W	Reporting limit elevated due to sample matrix.
I	ICVS % rec outside 95-105% but within 90-110%		
J	Estimated result; concentration is less than routine RL but greater than MDL.	N	Analyte is not part of our NELAC accreditation or accreditation may not be available for this parameter.
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	ND	Analyte was not detected using a library search routine; No calibration standard was analyzed.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID: Sample ID: Sample No: Posults are ren	CGMT, INC. 23E0331, Gewalt H GHAW #1 23-5368-001 ported on a dry weight	amilton Associates, Inc	-		Date Collected: Time Collected: Date Received: Date Reported:		06/22/23 8:00 06/23/23 07/06/23
Analyte	forted on a dry worght]	Result	R.L.	Units	Flags
Solids, Total		Method: 2540G 201	1				
Analysis Date:	: 06/29/23						
Total Solids				86.03		%	
	nic Compounds	Method: 5035A/826	0B				
Analysis Date:	: 07/02/23			-	200	/1	
Acetone				200	200	ug/kg	
Benzene				5.0	5.0	ug/kg	
Bromodichloro	omethane			5.0	5.0	ug/kg	
Bromoform				5.0	5.0	ug/kg	
Bromomethan				10.0	10.0	ug/kg	
2-Butanone (N			<	100	100	ug/kg	
Carbon disulfi				6.7	5.0	ug/kg	
Carbon tetrach				5.0	5.0	ug/kg	
Chlorobenzene				5.0	5.0	ug/kg	
Chlorodibrom	omethane			5.0	5.0	ug/kg	
Chloroethane				10.0	10.0	ug/kg	
Chloroform				5.0	5.0	ug/kg	
Chloromethan				10.0	10.0	ug/kg	
1,1-Dichloroet				5.0	5.0	ug/kg	
1,2-Dichloroet				5.0	5.0	ug/kg	
1,1-Dichloroet				5.0	5.0	ug/kg	
cis-1,2-Dichlo				5.0	5.0	ug/kg	
trans-1,2-Dich				5.0	5.0	ug/kg	
1,2-Dichlorop	ropane			5.0	5.0	ug/kg	
cis-1,3-Dichlo	ropropene			4.0	4.0	ug/kg	
trans-1,3-Dich	loropropene			4.0	4.0	ug/kg	
Ethylbenzene				5.0	5.0	ug/kg	
2-Hexanone				10.0	10.0	ug/kg	
~	tylether (MTBE)			5.0	5.0	ug/kg	
4-Methyl-2-pe	entanone (MIBK)			10.0	10.0	ug/kg	
Methylene chl	oride			20.0	20.0	ug/kg	
Styrene				5.0	5.0	ug/kg	
1,1,2,2-Tetrac	hloroethane			5.0	5.0	ug/kg	
Tetrachloroeth	nene			5.0	5.0	ug/kg	
Toluene				5.0	5.0	ug/kg	
1,1,1-Trichlor				5.0	5.0	ug/kg	
1,1,2-Trichlor	oethane			5.0	5.0	ug/kg	
Trichloroether	ne		<	5.0	5.0	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Jampie D. Date Reported: 07/06/23 Results are reported on a dry weight basis. Date Reported: 07/06/23 Analyte Result R.L. Units Flags Analyte Result R.L. Units Flags Analysis Date: 07/06/23 Winyl acetate 10.0 10.0 ug/kg Vinyl acetate 10.0 10.0 ug/kg Vinyl acetate 10.0 10.0 ug/kg Xylene, Total 5.0 5.0 ug/kg Acenaphthene 330 330 ug/kg Acenaphthene 330 330 ug/kg Benzo(a) Benzo(a) 330 ug/kg Benzo(a)aptrene 90 90 ug/kg Benzo(a) 330 ug/kg Benzo(b)flouranthene 330 330 ug/kg Benzo(b)flouranthene 330 330 ug/kg Benzo(a)prene 330 330 ug/kg Benzo(k)fluor	Client: Project ID:	CGMT, INC. 23E0331, Gewalt H	amilton Associates, Inc	•		Collected: Collected:	06/22/23 8:00
Analyte Result Result R.L. Units Flags Analyte Method: 5035A/8260B Flags Volatile Organic Compounds Method: 5035A/8260B <th>Sample ID:</th> <th>GHAW #1</th> <th></th> <th></th> <th>Date F</th> <th>Received:</th> <th>06/23/23</th>	Sample ID:	GHAW #1			Date F	Received:	06/23/23
Analyte Result R.L. Units Flags Volatile Organic Compounds Analysis Date: 07/02/23 Method: 5035A/8260B 10.0 10.0 ug/kg Vinyl acetate < 10.0 10.0 ug/kg 10.0 ug/kg Vinyl acetate < 5.0 5.0 ug/kg 10.0 ug/kg Semi-Volatile Compounds Analysis Date: 06/30/23 Preparation Method 3540C Preparation Date: 06/28/23 Acenaphthene < 330 330 ug/kg 10.0 ug/kg Acenaphthylene < 330 330 ug/kg 10.0 10.0 ug/kg Benzidine < 330 330 ug/kg 10.0	Sample No:	23-5368-001			Date F	Reported:	07/06/23
Method: Method: 5035A/8260B Analysis Date: 07/02/23 10.0 10.0 ug/kg Vinyl actate < 10.0 10.0 ug/kg Vinyl actate < 10.0 10.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Analysis Date: 06/30/23 Preparation Date: 06/28/23 Acenaphthylene < 330 330 ug/kg Acenaphtylene < 330 330 ug/kg Benzolantracene < 330 330 ug/kg Benzolantracene < 330 330 ug/kg Benzolapyrene < 90 90 ug/kg Benzolapyrene < 330 330 ug/kg Benzokjhperylene < 330 <t< th=""><th>Results are rep</th><th>ported on a dry weight</th><th>basis.</th><th></th><th></th><th></th><th></th></t<>	Results are rep	ported on a dry weight	basis.				
Analysis Date: 07/02/23 Vinyl cetate < 10.0 10.0 ug/kg Vinyl chloride < 5.0 5.0 ug/kg Sylenc, Total < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Date: 06/28/23 Acenaphthene < 330 330 ug/kg 4 Acenaphthylene < 330 330 ug/kg Acenaphtylene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(k)fluoranthene < 330 330	Analyte			Result	R.L.	Units	Flags
Number of the second secon			Method: 5035A/82	260B			
All products < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Analysis Date: $06/30/23$ Method: 8270C Preparation Date: $06/28/23$ Acenaphthene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)pyrene < 90 90 ug/kg Benzo(h)fluoranthene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzo(aid < 330 330 ug/kg Benzo(aphton < 330 330 ug/kg Benzo(aphton < 330 330 ug/kg Benzo(aphton < 330 330 ug/kg Benzo(aphthalene < 330 <th< td=""><td>Vinyl acetate</td><td></td><td></td><td></td><td></td><td>ug/kg</td><td></td></th<>	Vinyl acetate					ug/kg	
Semi-Volatile Compounds Semi-Volatile CompoundsMethod: $8270C$ Preparation Method $3540C$ Preparation Date: $06/28/23$ Acenaphthene< 330	Vinyl chloride						
Analysis Date: $06/28/23$ Preparation Date: $06/28/23$ Acenaphthene <	Xylene, Total			< 5.0	5.0	ug/kg	
Accenaphthylene 330 330 ug/kg Anthracene 330 330 ug/kg Benzidine 330 330 ug/kg Benzo(a)anthracene 330 330 ug/kg Benzo(a)pyrene 90 90 ug/kg Benzo(b)fluoranthene 330 330 ug/kg Benzo(b)fluoranthene 330 330 ug/kg Benzo(b)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene 330 330 ug/kg Benzo(ch)fluoranthene 330 330 ug/kg Benzo(aid 330 330 ug/kg Benzo(aid 330 330 ug/kg Benzolic acid 330 330 ug/kg Benzolic (2-Chloroethoxy)methane 330 ug/kg Sig(2-Chlorophyl)pther bis(2-Chlorosiopopyl)pther			Method: 8270C				
Acenaphthylene< 330 330 ug/kg Anthracene< 330	Acenaphthene			< 330	330	ug/kg	
Anthracene< 330330 ug/kg Benzidine< 330	•			< 330	330	ug/kg	
Dominic < 330 330 ug/kg Benzo(a)pyrene < 90 90 ug/kg Benzo(a)pyrene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzo(acid < 330 330 ug/kg Benzol caid < 330 330 ug/kg Benzyl alcohol < 330 330 ug/kg bis(2-Chloroethoxy)methane < 330 330 ug/kg bis(2-Chloroethyl)ether < 330 330 ug/kg bis(2-Chloroethyl)ether < 330 330 ug/kg bis(2-Chloroethyl)phthalate < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg 2-Chloroaniline < 330 330 ug/kg 4-Chloroaniline < 330 330 ug/kg 4-Chloroaniphthalene < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,2-Dichlorob	Anthracene			< 330	330	ug/kg	
Benzo(a)anthracene< 330 330 ug/kg Benzo(a)pyrene< 90	Benzidine			< 330	330	ug/kg	
Benzo(a)pyrene< 9090ug/kgBenzo(b)fluoranthene< 330	Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(b)fluoranthene< 330 330 ug/kg Benzo(k)fluoranthene< 330				< 90	90	ug/kg	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				< 330	330	ug/kg	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzo(k)fluor	anthene		< 330		ug/kg	
Definition and Benzyl alcohol < 330 330 ug/kg Benzyl alcohol < 330 330 ug/kg bis(2-Chloroethoxy)methane < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Ethylhexyl)phthalate < 330 330 ug/kg 4-Bromophenyl phenyl ether < 330 330 ug/kg Butyl benzyl phthalate < 330 330 ug/kg 4-Chloroaniline < 330 330 ug/kg 4-Chloro-3-methylphenol < 330 330 ug/kg 2-Chlorophenol < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,2-Dichlorobenzene < 330 330 ug/kg 1,3-Dichlorobenzene < 330 330 ug/kg 1,4-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene < 330 330 ug/kg 3,3'-Dichlorobenzene<	Benzo(ghi)per	rylene		< 330		ug/kg	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzoic acid			< 330			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Benzyl alcoho	ol					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	bis(2-Chloroe	thoxy)methane					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	bis(2-Chloroe	thyl)ether					
4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330	bis(2-Chlorois	sopropyl)ether					
Homopheniy pinky ender< 330 330 ug/kg Butyl benzyl phthalate< 330	bis(2-Ethylher	xyl)phthalate					
Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	4-Bromophen	yl phenyl ether					
4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	Butyl benzyl p	ohthalate					
4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg	Carbazole						
2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 3,3'-Dichlorobenzidine< 660 660 ug/kg							
$\begin{array}{llllllllllllllllllllllllllllllllllll$		• •					
4-Chlorophenyl phenyl ether< 330						_	
Chrysene< 330330ug/kgDibenzo(a,h)anthracene< 90	-						
Dibenzo(a,h)anthracene< 9090ug/kgDibenzofuran< 330	4-Chlorophen	yl phenyl ether				_	
Dibenzofuran< 330	Chrysene						
1,2-Dichlorobenzene< 330330ug/kg1,3-Dichlorobenzene< 330		inthracene				-	
1,3-Dichlorobenzene< 330330ug/kg1,4-Dichlorobenzene< 330	Dibenzofuran						
1,3-Dichlorobenzene< 330330ug/kg1,4-Dichlorobenzidine< 660	,						
3,3'-Dichlorobenzidine < 660 660 ug/kg						_	
	,						
2.4-Dichlorophenol < 350 ug/kg							
	2,4-Dichlorop	henol		> 330	550	ug/ng	Page 5 of 18

• 4

TΤ

DI

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	8:00
Sample ID:	GHAW #1	Date Received:	06/23/23
Sample No:	23-5368-001	Date Reported:	07/06/23
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 06/30/23	Method: 8270C	Preparation Method 3540C Preparation Date: 06/28/23			
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23				
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	8:00				
Sample ID:	GHAW #1	Date Received:	06/23/23				
Sample No:	23-5368-001	Date Reported:	07/06/23				
Results are reported on a dry weight basis.							

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 06/30/23	Method: 8270C		Preparation Method 3540C Preparation Date: 06/28/23		
2.4,5-Trichlorophenol		< 330	330	ug/kg	
2,4,6-Trichlorophenol		< 330	330	ug/kg	
Pesticides/PCBs Analysis Date: 06/30/23	Method: 8081A/80	82	Preparation Preparation D	Method 3540 Date: 06/28/23	C
Aldrin		< 8.0	8.0	ug/kg	
Aroclor 1016		< 80.0	80.0	ug/kg	
Aroclor 1221		< 80.0	80.0	ug/kg	
Aroclor 1232		< 80.0	80.0	ug/kg	
Aroclor 1242		< 80.0	80.0	ug/kg	
Aroclor 1248		< 80.0	80.0	ug/kg	
Aroclor 1254		< 160	160	ug/kg	
Aroclor 1260		< 160	160	ug/kg	
alpha-BHC		< 2.0	2.0	ug/kg	
beta-BHC		< 8.0	8.0	ug/kg	
delta-BHC		< 8.0	8.0	ug/kg	
gamma-BHC (Lindane)		< 8.0	8.0	ug/kg	
alpha-Chlordane		< 80.0	80.0	ug/kg	
gamma-Chlordane		< 80.0	80.0	ug/kg	
4,4'-DDD		< 16.0	16.0	ug/kg	
4,4'-DDE		< 16.0	16.0	ug/kg	
4,4'-DDT		< 16.0	16.0	ug/kg	
Dieldrin		< 16.0	16.0	ug/kg	
Endosulfan I		< 8.0	8.0	ug/kg	
Endosulfan II		< 16.0	16.0	ug/kg	
Endosulfan sulfate		< 16.0	16.0	ug/kg	
Endrin		< 16.0	16.0	ug/kg	
Endrin aldehyde		< 16.0	16.0	ug/kg	
Endrin ketone		< 16.0	16.0	ug/kg	
Heptachlor		< 8.0	8.0	ug/kg	
Heptachlor epoxide		< 8.0	8.0	ug/kg	
Methoxychlor		< 80.0	80.0	ug/kg	
Toxaphene		< 160	160	ug/kg	
Total Metals Analysis Date: 06/30/23	Method: 6010C		Preparation Method 3050B Preparation Date: 06/27/23		
Arsenic		9.8	1.0	mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23			
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	8:00			
Sample ID:	GHAW #1	Date Received:	06/23/23			
Sample No:	23-5368-001	Date Reported:	07/06/23			
Results are reported on a dry weight basis.						

Analyte		Result	R.L.	Units	Flags
Total Metals Analysis Date: 06/30/23	Method: 6010C	Preparation Method 3050B Preparation Date: 06/27/23			
Barium		89.6	0.5	mg/kg	
Cadmium		< 0.5	0.5	mg/kg	
Chromium		19.6	0.5	mg/kg	
Lead		21.5	0.5	mg/kg	
Selenium		< 1.0	1.0	mg/kg	
Silver		< 0.2	0.2	mg/kg	
Total Mercury Analysis Date: 06/29/23	Method: 7471B				
Mercury		< 0.05	0.05	mg/kg	
pH @ 25°C, 1:2 Analysis Date: 06/29/23 10:48	Method: 9045D				
pH @ 25°C, 1:2		7.65		Units	
Cyanide, Total Analysis Date: 06/30/23	Method: 9010B/90)14			
Cyanide, Total		0.14	0.10	mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical Ne	ehc	μ			
Client:	CGMT, INC.				Date C	Collected:	06/22/23
Project ID:	23E0331, Gewalt H	amilton Associates, Inc			Time C	Collected:	9:00
Sample ID:	GHAW #2				Date R	leceived:	06/23/23
Sample No:	23-5368-002				Date R	eported:	07/06/23
-	orted on a dry weight	basis.					
Analyte			I	Result	R.L.	Units	Flags
Solids, Total		Method: 2540G 201	11				
Analysis Date:	06/29/23						
Total Solids				87.08		%	
Volatile Organ Analysis Date:	nic Compounds 07/02/23	Method: 5035A/826	0B				
Acetone			<	200	200	ug/kg	
Benzene				5.0	5.0	ug/kg	
Bromodichloro	omethane			5.0	5.0	ug/kg	
Bromoform			<	5.0	5.0	ug/kg	
Bromomethane	e		<	10.0	10.0	ug/kg	
2-Butanone (M	1EK)		<	100	100	ug/kg	
Carbon disulfie			<	5.0	5.0	ug/kg	
Carbon tetrach	loride		<	5.0	5.0	ug/kg	
Chlorobenzene	e		<	5.0	5.0	ug/kg	
Chlorodibromo	omethane		<	5.0	5.0	ug/kg	
Chloroethane			<	10.0	10.0	ug/kg	
Chloroform			<	5.0	5.0	ug/kg	
Chloromethane	e		<	10.0	10.0	ug/kg	
1,1-Dichloroet	hane		<	5.0	5.0	ug/kg	
1,2-Dichloroet			<	5.0	5.0	ug/kg	
1,1-Dichloroet			<	5.0	5.0	ug/kg	
cis-1,2-Dichlor			<	5.0	5.0	ug/kg	
trans-1,2-Dich			<	5.0	5.0	ug/kg	
1,2-Dichloropr	ropane		<	5.0	5.0	ug/kg	
cis-1,3-Dichlor	•		<	4.0	4.0	ug/kg	
trans-1,3-Dich			<	4.0	4.0	ug/kg	
Ethylbenzene			<	5.0	5.0	ug/kg	
2-Hexanone			<	10.0	10.0	ug/kg	
	tylether (MTBE)		<	5.0	5.0	ug/kg	
•	ntanone (MIBK)		<	10.0	10.0	ug/kg	
Methylene chl			<	20.0	20.0	ug/kg	
Styrene			<	5.0	5.0	ug/kg	
1,1,2,2-Tetracl	hloroethane		<	5.0	5.0	ug/kg	
Tetrachloroeth			<	5.0	5.0	ug/kg	
Toluene			<	5.0	5.0	ug/kg	
1,1,1-Trichloro	oethane		<	5.0	5.0	ug/kg	
1,1,2-Trichloro			<	5.0	5.0	ug/kg	
1.1.2-1 ricmon	oethane			2.0	5.0	**88	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client: Project ID: Sample ID:	CGMT, INC. 23E0331, Gewalt H GHAW #2	amilton Associates, Inc	1	Time (Collected: Collected: Received:	06/22/23 9:00 06/23/23
Sample No:	23-5368-002			Date F	Reported:	07/06/23
Results are rep	ported on a dry weight	basis.				
Analyte			Result	R.L.	Units	Flags
Volatile Orga Analysis Date	nic Compounds : 07/02/23	Method: 5035A/82	260B			
Vinyl acetate			< 10.0	10.0	ug/kg	
Vinyl chloride	2		< 10.0	10.0	ug/kg	
Xylene, Total			< 5.0	5.0	ug/kg	
Semi-Volatile Analysis Date		Method: 8270C		Preparation Preparation E		
Acenaphthene			< 330	330	ug/kg	
Acenaphthyle			< 330	330	ug/kg	
Anthracene			< 330	330	ug/kg	
Benzidine			< 330	330	ug/kg	
Benzo(a)anthr	acene		< 330	330	ug/kg	
Benzo(a)pyrer			< 90	90	ug/kg	
Benzo(b)fluor	anthene		< 330	330	ug/kg	
Benzo(k)fluor	anthene		< 330	330	ug/kg	
Benzo(ghi)per	rylene		< 330	330	ug/kg	
Benzoic acid			< 330	330	ug/kg	
Benzyl alcoho	ol		< 330	330	ug/kg	
`	thoxy)methane		< 330	330	ug/kg	
bis(2-Chloroet	• •		< 330	330	ug/kg	
bis(2-Chlorois			< 330	330	ug/kg	
bis(2-Ethylhes	• • •		< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Butyl benzyl p	ohthalate		< 330	330	ug/kg	
Carbazole			< 330	330 330	ug/kg	
4-Chloroanilir			< 330	330	ug/kg	
4-Chloro-3-me	• •		< 330 < 330	330	ug/kg ug/kg	
2-Chloronaph			< 330	330	ug/kg	
2-Chlorophen			< 330	330	ug/kg	
	yl phenyl ether		< 330	330	ug/kg	
Chrysene Dibanza(a b)a	unthroacon c		< 90	90	ug/kg	
Dibenzo(a,h)a			< 330	330	ug/kg	
Dibenzofuran			< 330	330	ug/kg	
1,2-Dichlorob 1,3-Dichlorob			< 330	330	ug/kg	
1,3-Dichlorob			< 330	330	ug/kg	
3,3'-Dichlorot			< 660	660	ug/kg	
2,4-Dichlorop			< 330	330	ug/kg	
2,4-Diemoiop	nonor				5 5	Deca 10 of 19

WT 14

121

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	9:00
Sample ID:	GHAW #2	Date Received:	06/23/23
Sample No:	23-5368-002	Date Reported:	07/06/23
Results are rep	orted on a dry weight basis.		

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 06/30/23	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
		< 330	330	ug/kg	
Pentachlorophenol Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene				0 0	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23		
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	9:00		
Sample ID:	GHAW #2	Date Received:	06/23/23		
Sample No:	23-5368-002	Date Reported:	07/06/23		
Results are reported on a dry weight basis.					

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 06/30/23	Method: 8270C		Preparation Method 3540C Preparation Date: 06/28/23		
2,4,5-Trichlorophenol		< 330	330	ug/kg	
2,4,6-Trichlorophenol		< 330	330	ug/kg	
Pesticides/PCBs Analysis Date: 06/30/23	Method: 8081A/80	82		Method 3540 Date: 06/28/23)C
Aldrin		< 8.0	8.0	ug/kg	
Aroclor 1016		< 80.0	80.0	ug/kg	
Aroclor 1221		< 80.0	80.0	ug/kg	
Aroclor 1232		< 80.0	80.0	ug/kg	
Aroclor 1242		< 80.0	80.0	ug/kg	
Aroclor 1248		< 80.0	80.0	ug/kg	
Aroclor 1254		< 160	160	ug/kg	
Aroclor 1260		< 160	160	ug/kg	
alpha-BHC		< 2.0	2.0	ug/kg	
beta-BHC		< 8.0	8.0	ug/kg	
delta-BHC		< 8.0	8.0	ug/kg	
gamma-BHC (Lindane)		< 8.0	8.0	ug/kg	
alpha-Chlordane		< 80.0	80.0	ug/kg	
gamma-Chlordane		< 80.0	80.0	ug/kg	
4,4'-DDD		< 16.0	16.0	ug/kg	
4,4'-DDE		< 16.0	16.0	ug/kg	
4,4'-DDT		< 16.0	16.0	ug/kg	
Dieldrin		< 16.0	16.0	ug/kg	
Endosulfan I		< 8.0	8.0	ug/kg	
Endosulfan II		< 16.0	16.0	ug/kg	
Endosulfan sulfate		< 16.0	16.0	ug/kg	
Endrin		< 16.0	16.0	ug/kg	
Endrin aldehyde		< 16.0	16.0	ug/kg	
Endrin ketone		< 16.0	16.0	ug/kg	
Heptachlor		< 8.0	8.0	ug/kg	
Heptachlor epoxide		< 8.0	8.0	ug/kg	
Methoxychlor		< 80.0	80.0	ug/kg	
Toxaphene		< 160	160	ug/kg	
Total Metals Analysis Date: 06/30/23	Method: 6010C		Preparation Method 3050B Preparation Date: 06/27/23		
Arsenic		6.4	1.0	mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23			
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	9:00			
Sample ID:	GHAW #2	Date Received:	06/23/23			
Sample No:	23-5368-002	Date Reported:	07/06/23			
Results are reported on a dry weight basis.						

Analyte		Result	R.L.	Units	Flags
Total Metals Analysis Date: 06/30/23	Method: 6010C		Preparation Method 3050B Preparation Date: 06/27/23		
Barium		52.2	0.5	mg/kg	
Cadmium		< 0.5	0.5	mg/kg	
Chromium		18.5	0.5	mg/kg	
Lead		12.8	0.5	mg/kg	
Selenium		< 1.0	1.0	mg/kg	
Silver		< 0.2	0.2	mg/kg	
Total Mercury Analysis Date: 06/29/23	Method: 7471B				
Mercury		< 0.05	0.05	mg/kg	
pH @ 25°C, 1:2 Analysis Date: 06/29/23 10:48	Method: 9045D				
pH @ 25°C, 1:2		8.45		Units	
Cyanide, Total Analysis Date: 06/30/23	Method: 9010B/90)14			
Cyanide, Total		< 0.10	0.10	mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

		Analytical K	cho	II.				
Client:	CGMT, INC.				Date C	ollected:	06/22/23	
Project ID:	23E0331, Gewalt H	amilton Associates, Inc			Time C	Time Collected: 10:0		
Sample ID:	GHAW #3				Date R	eceived:	06/23/23	
Sample No:	23-5368-003				Date R	eported:	07/06/23	
•	orted on a dry weight	basis.						
Analyte			R	lesult	R.L.	Units	Flag	
Solids, Total		Method: 2540G 20	11					
Analysis Date:	06/29/23							
Total Solids				86.61		%		
Volatile Organ Analysis Date:	ic Compounds 07/02/23	Method: 5035A/826	50B					
Acetone			< 2	200	200	ug/kg		
Benzene			< :	5.0	5.0	ug/kg		
Bromodichloro	methane		< :	5.0	5.0	ug/kg		
Bromoform			< :	5.0	5.0	ug/kg		
Bromomethane			<	10.0	10.0	ug/kg		
2-Butanone (M	EK)			100	100	ug/kg		
Carbon disulfid	-		< ;	5.0	5.0	ug/kg		
Carbon tetrachl	oride		< :	5.0	5.0	ug/kg		
Chlorobenzene			< ;	5.0	5.0	ug/kg		
Chlorodibromo	methane		< ;	5.0	5.0	ug/kg		
Chloroethane			<	10.0	10.0	ug/kg		
Chloroform			< :	5.0	5.0	ug/kg		
Chloromethane			<	10.0	10.0	ug/kg		
1,1-Dichloroeth	ane		<	5.0	5.0	ug/kg		
1,2-Dichloroeth	ane		<	5.0	5.0	ug/kg		
1,1-Dichloroeth	iene		<	5.0	5.0	ug/kg		
cis-1,2-Dichloro			<	5.0	5.0	ug/kg		
trans-1,2-Dichle			<	5.0	5.0	ug/kg		
1,2-Dichloropro			<	5.0	5.0	ug/kg		
cis-1,3-Dichlor			<	4.0	4.0	ug/kg		
trans-1,3-Dichle			<	4.0	4.0	ug/kg		
Ethylbenzene			<	5.0	5.0	ug/kg		
2-Hexanone			<	10.0	10.0	ug/kg		
	ylether (MTBE)		<	5.0	5.0	ug/kg		
•	tanone (MIBK)		<	10.0	10.0	ug/kg		
Methylene chlo	•		<	20.0	20.0	ug/kg		
Styrene			<	5.0	5.0	ug/kg		
1,1,2,2-Tetrach	loroethane		<	5.0	5.0	ug/kg		
Tetrachloroethe			<	5.0	5.0	ug/kg		
Toluene			<	5.0	5.0	ug/kg		
1,1,1-Trichloro	ethane		<	5.0	5.0	ug/kg		
1,1,2-Trichloro			<	5.0	5.0	ug/kg		
Trichloroethene			<	5.0	5.0	ug/kg		

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Project ID:23E0331, Gewalt Hamilton Associates, IncTime Collected:10:00Sample ID:GHAW #3Date Received:06/23/23Sample No:23-5368-003Date Reported:07/06/23Results are reported on a dry weight basis.ResultR.L.UnitsFlagsVolatile Organic Compounds Analysis Date:Method:5035A/8260BVinyl acetate< 10.0	Client:	CGMT, INC.		1	Date C	Collected:	06/22/23
Sample ID: GHAW #3 Date Received: 06/23/23 Sample No: 23-5368-003 Date Reported: 07/06/23 Results are reported on a dry weight basis. Result R.L. Units Flags Analyte Result R.L. Units Flags Vinyl acctate < 10.0 10.0 ug/kg Vinyl horide < 5.0 Sug/kg Vinyl choride < 5.0 5.0 ug/kg Sug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Preparation Date: 06/30/23 Acenaphthene < 330 330 ug/kg Banzo(b/locanthene < 330 330 ug/kg Benzidine < 330 330 ug/kg Banzo(b/locanthene < 330 330 ug/kg Benzo(b/locranthene < 330 330 ug/kg Benzo(b/locranthene < 330 330 ug/kg Benzo(b/locranthene < 330 330 ug/kg Benzo(b/locranthene < 330 330 ug/kg Benzo(b/locath/locath/locath/locath/locath/locath			amilton Associates, Inc		Time	Collected:	10:00
Sample No: 23-5368-003 Date Reported: 07/06/23 Results are reported on a dry weight basis. Result R.L. Units Flags Analytic Result R.L. Units Flags Valatie Organic Compounds Analysis Date: Method: 5035A/8260B Flags Vinyl choride 10.0 ug/kg Vinyl choride Semi-Volatile Compounds Method: Science Preparation Method 3540C Accanaphthene 330 ug/kg Semi-Volatile Compounds Method: Science Preparation Method Science Science Science Preparation Method: Science Science			,,		Date F	Received:	06/23/23
Analyse Result R.L. Units Flags Analysic Result R.L. Units Flags Volatile Organic Compounds Analysis Date: 07/02/23 Method: 5035A/8260B Vinyl acetate < 10.0 10.0 ug/kg Vinyl acetate < 10.0 10.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Preparation Date: 06/28/23 Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)pyrene < 90 90 ug/kg Benzo(h)flocrathene < 330 330 ug/kg Benzo(h)flocrathene < 330 330 ug/kg Benzo(h)flocrathene < 330 330 ug/kg Benzo(k)flocrathene < 330 330 ug/kg Benzo(k)flocrathene					Date F	Reported:	07/06/23
AnalyteResultR.L.UnitsPlagsVolatile Organic Compounds Analysis Date:Method: $5035A/8260B$ Analysis Date:07/02/23010.0ug/kgVinyl acetate< 10.010.0ug/kgXylene, Total< 5.05.0ug/kgSemi-Volatile Compounds Analysis Date:Method: $8270C$ Preparation MethodAnalysis Date:06/30/239330ug/kgAcenaphthylene< 330330ug/kgAcenaphthylene< 330330ug/kgBenzidine< 330330ug/kgBenzo(a)anthracene< 330330ug/kgBenzo(a)anthracene< 330330ug/kgBenzo(b)loranthene< 330330ug/kgBenzo(ph)loranthene< 330330ug/kg	~		thesis			F	
Volatile Organic Compounds Analysis Date: 07/02/23 Method: $5035A/8260B$ Vinyl acetate < 10.0 10.0 ug/kg Vinyl choride < 10.0 10.0 ug/kg Xylene, Total < 5.0 5.0 ug/kg Semi-Volatile Compounds Analysis Date: 06/30/23 Method: $8270C$ Preparation Method $3540C$ Accanaphthene < 330 330 ug/kg Accanaphthylene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)pyrene < 90 90 ug/kg Benzo(a)phyrene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(k)fluoranthene < 330		Softed off a dry weight		Result	R.L.	Units	Flags
Analysis Date: $07/02/23$ Vinyl acetate < 10.0 10.0 ug/kg Vinyl chloride < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Date: $06/28/23$ Accapabithene < 330 330 ug/kg Accapabithylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzidine < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(k)fluoranthene < 330 330 ug/kg <th></th> <th>nie Compounds</th> <th>Method: 50354/82</th> <th>60B</th> <th></th> <th></th> <th></th>		nie Compounds	Method: 50354/82	60B			
yinyi chloride < 10.0 10.0 ug/kg Xylene, Total < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Method 3540C Analysis Date: 06/30/23 330 ug/kg Accenaphthene < 330 330 ug/kg Accenaphthylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(k)fluoranthene < 330			Method: 5055A02		10.0	(1	
Sylene, Total < 5.0 5.0 ug/kg Semi-Volatile Compounds Method: 8270C Preparation Date: $06/28/23$ Acenaphthene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzo(a)anthracene < 330 330 ug/kg Benzo(a)apyrene < 90 90 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(b)fluoranthene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzo(ghi)perylene < 330 330 ug/kg Benzyl alcohol < 330 330 ug/kg bis(2-Chloroethoxy)methane < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg bis(2-Chloroisopropyl)ether < 330 330 ug/kg	<i>•</i>						
Aynuk, YodalMethod: $8270C$ Preparation Method $3540C$ Preparation Date: $06/28/23$ Semi-Volatile CompoundsMethod: $8270C$ Preparation Date: $06/28/23$ Analysis Date: $06/28/23$ 330 ug/kg Acenaphthylene < 330 330 ug/kg Acenaphthylene < 330 330 ug/kg Anthracene < 330 330 ug/kg Benzolaine < 330 330 ug/kg Benzolaine < 330 330 ug/kg Benzolaine < 330 330 ug/kg Benzolainthracene < 330 330 ug/kg Benzolaine < 330 330 ug/kg Chloroethoxylme	Vinyl chloride	2					
Analysis Date: $06/28/23$ Preparation Date: $06/28/23$ Acenaphthene< 330	Xylene, Total			< 5.0	5.0	ug/kg	
Accamphthene< 330330ug/kgAcenaphthylene< 330			Method: 8270C		Preparation Preparation I	Method 3 Date: 06/28/	540C /23
Acenaphthylene< 330 330 ug/kg Anthracene< 330 330 ug/kg Benzidine< 330 330 ug/kg Benzo(a)anthracene< 330 330 ug/kg Benzo(a)pyrene< 90 90 ug/kg Benzo(b)fluoranthene< 330 330 ug/kg Benzo(c)fluoranthene< 330 330 ug/kg Benzo(c)fluorehy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg Carbazole< 330 330 ug/kg Chloronaphthalen< 330 330 ug/kg 2-Chloronaphthalen< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1	-			< 330	330	ug/kg	
Anthracene< 330330 ug/kg Benzidine< 330	•			< 330	330	ug/kg	
Benzidine< 330330 ug/kg Benzo(a)anthracene< 330				< 330	330	ug/kg	
Benzo(a)anthracene< 330330 ug/kg Benzo(a)pyrene< 90				< 330	330	ug/kg	
Benzo(a)pyrene< 9090ug/kgBenzo(b)fluoranthene< 330		acene		< 330	330	ug/kg	
Benzo(b)fluoranthene< 330 330 ug/kg Benzo(k)fluoranthene< 330				< 90	90	ug/kg	
Benzo(k)fluoranthene< 330 330 ug/kg Benzo(ghi)perylene< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzyl alcohol< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg c2-Chloroethoxy)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorob				< 330	330	ug/kg	
Benzo(ghi)perylene< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzoic acid< 330 330 ug/kg Benzyl alcohol< 330 330 ug/kg bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1-Chlorobenzene< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg <	· · ·			< 330	330	ug/kg	
Benzoic acid< 330 330 ug/kg Benzyl alcohol< 330	· · ·			< 330	330	ug/kg	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(O /1			< 330	330	ug/kg	
bis(2-Chloroethoxy)methane< 330 330 ug/kg bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroisopropyl)ether< 330 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg 2-Chloroaniline< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1-Chlorobenzene< 330 330 ug/kg 1-2-Dichlorobenzene< 330 330 ug/kg <td></td> <td>bl</td> <td></td> <td>< 330</td> <td>330</td> <td>ug/kg</td> <td></td>		bl		< 330	330	ug/kg	
bis(2-Chloroethyl)ether< 330 330 ug/kg bis(2-Chloroisopropyl)ether< 330 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1-Chlorophenyl phenyl ether< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1-Chlorophenyl phenyl ether< 330 330 ug/kg 1-Chlorophenyl phenyl ether< 330 330 ug/kg 1-Chlorobenzene< 90 90 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 2,4-Dichlorobenzidine< 660 660 ug/kg 2,4-Dichlorophenol< 330 330 ug/kg				< 330	330	ug/kg	
bis(2-Chloroisopropyl)ether< 330 330 ug/kg bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1-Chlorophenol< 330 330 ug/kg 1-Chlorobenzene< 90 90 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 2,4-Dichlorobenzidine< 330 330 ug/kg 2,4-Dichlorophenol< 330 330 ug/kg				< 330	330	ug/kg	
bis(2-Ethylhexyl)phthalate< 330 330 ug/kg 4-Bromophenyl phenyl ether< 330 330 ug/kg Butyl benzyl phthalate< 330 330 ug/kg Carbazole< 330 330 ug/kg 4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 1-Chlorophenyl phenyl ether< 330 330 ug/kg 1-Chlorophenyl phenyl ether< 330 330 ug/kg 1-Chlorobenzene< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 2,3'-Dichlorobenzene< 330 330 ug/kg 2,4-Dichlorophenol< 330 330 ug/kg	·	• •		< 330	330		
High on option y picture 330 330 ug/kg Butyl benzyl phthalate 330 330 ug/kg Carbazole 330 330 ug/kg 4-Chloroaniline 330 330 ug/kg 4-Chloro-3-methylphenol 330 330 ug/kg 2-Chloronaphthalene 330 330 ug/kg 2-Chlorophenol 330 330 ug/kg 4-Chlorophenol 330 330 ug/kg 4-Chlorophenol 330 330 ug/kg 4-Chlorophenyl phenyl ether 330 330 ug/kg Chrysene 330 330 ug/kg Dibenzo(a,h)anthracene 90 90 ug/kg 1,2-Dichlorobenzene 330 330 ug/kg 1,3-Dichlorobenzene 330 330 ug/kg 1,4-Dichlorobenzene 330 330 ug/kg 3,3'-Dichlorobenzidine 660 660 ug/kg </td <td>bis(2-Ethylhe</td> <td>xyl)phthalate</td> <td></td> <td>< 330</td> <td></td> <td></td> <td></td>	bis(2-Ethylhe	xyl)phthalate		< 330			
Carbazole < 330	4-Bromophen	yl phenyl ether		< 330			
4-Chloroaniline< 330 330 ug/kg 4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 2,4-Dichlorophenol< 330 330 ug/kg	Butyl benzyl	phthalate				-	
4-Chloro-3-methylphenol< 330 330 ug/kg 2-Chloronaphthalene< 330 330 ug/kg 2-Chlorophenol< 330 330 ug/kg 4-Chlorophenyl phenyl ether< 330 330 ug/kg Chrysene< 330 330 ug/kg Dibenzo(a,h)anthracene< 90 90 ug/kg Dibenzofuran< 330 330 ug/kg 1,2-Dichlorobenzene< 330 330 ug/kg 1,3-Dichlorobenzene< 330 330 ug/kg 1,4-Dichlorobenzene< 330 330 ug/kg 2,4-Dichlorophenol< 330 330 ug/kg	Carbazole						
2-Chloronaphthalene< 330	4-Chloroanili	ne					
2-Chlorophenol< 330	4-Chloro-3-m	ethylphenol					
4-Chlorophenyl phenyl ether< 330	2-Chloronaph	thalene					
Chrysene< 330330ug/kgDibenzo(a,h)anthracene< 90	2-Chlorophen	ol				_	
Dibenzo(a,h)anthracene< 9090ug/kgDibenzofuran< 330	4-Chlorophen	yl phenyl ether					
Dibenzofuran< 330330ug/kg1,2-Dichlorobenzene< 330	Chrysene						
Dictizional< 330330ug/kg1,2-Dichlorobenzene< 330		anthracene					
1,3-Dichlorobenzene< 330330ug/kg1,4-Dichlorobenzene< 330	Dibenzofuran						
1,4-Dichlorobenzene< 330330ug/kg3,3'-Dichlorobenzidine< 660	1,2-Dichlorob	benzene					
3,3'-Dichlorobenzidine< 660	1,3-Dichlorob	benzene				-	
2,4-Dichlorophenol < 330 330 ug/kg	1,4-Dichlorob	benzene					
2,4-Diemolophenol	3,3'-Dichlorol	benzidine					
	2,4-Dichlorop	henol		< 330	330	ug/Kg	_

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23			
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	10:00			
Sample ID:	GHAW #3	Date Received:	06/23/23			
Sample No:	23-5368-003	Date Reported:	07/06/23			
Results are reported on a dry weight basis.						

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 06/30/23	Method: 8270C		Preparation Preparation D		
Diethyl phthalate		< 330	330	ug/kg	
2,4-Dimethylphenol		< 330	330	ug/kg	
Dimethyl phthalate		< 330	330	ug/kg	
Di-n-butyl phthalate		< 330	330	ug/kg	
4,6-Dinitro-2-methylphenol		< 1,600	1600	ug/kg	
2,4-Dinitrophenol		< 1,600	1600	ug/kg	
2,4-Dinitrotoluene		< 250	250	ug/kg	
2,6-Dinitrotoluene		< 260	260	ug/kg	
Di-n-octylphthalate		< 330	330	ug/kg	
Fluoranthene		< 330	330	ug/kg	
Fluorene		< 330	330	ug/kg	
Hexachlorobenzene		< 330	330	ug/kg	
Hexachlorobutadiene		< 330	330	ug/kg	
Hexachlorocyclopentadiene		< 330	330	ug/kg	
Hexachloroethane		< 330	330	ug/kg	
Indeno(1,2,3-cd)pyrene		< 330	330	ug/kg	
Isophorone		< 330	330	ug/kg	
2-Methylnaphthalene		< 330	330	ug/kg	
2-Methylphenol		< 330	330	ug/kg	
3 & 4-Methylphenol		< 330	330	ug/kg	
Naphthalene		< 330	330	ug/kg	
2-Nitroaniline		< 1,600	1600	ug/kg	
3-Nitroaniline		< 1,600	1600	ug/kg	
4-Nitroaniline		< 1,600	1600	ug/kg	
Nitrobenzene		< 260	260	ug/kg	
2-Nitrophenol		< 1,600	1600	ug/kg	
4-Nitrophenol		< 1,600	1600	ug/kg	
n-Nitrosodi-n-propylamine		< 90	90	ug/kg	
n-Nitrosodimethylamine		< 330	330	ug/kg	
n-Nitrosodiphenylamine		< 330	330	ug/kg	
Pentachlorophenol		< 330	330	ug/kg	
Phenanthrene		< 330	330	ug/kg	
Phenol		< 330	330	ug/kg	
Pyrene		< 330	330	ug/kg	
Pyridine		< 330	330	ug/kg	
1,2,4-Trichlorobenzene		< 330	330	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

v I						
Client:	CGMT, INC.	Date Collected:	06/22/23			
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	10:00			
Sample ID:	GHAW #3	Date Received:	06/23/23			
Sample No:	23-5368-003	Date Reported:	07/06/23			
Results are reported on a dry weight basis.						

Analyte		Result	R.L.	Units	Flags
Semi-Volatile Compounds Analysis Date: 06/30/23	Method: 8270C		Preparation Method 3540C Preparation Date: 06/28/23		
2,4,5-Trichlorophenol		< 330	330	ug/kg	
2,4,6-Trichlorophenol		< 330	330	ug/kg	
Pesticides/PCBs Analysis Date: 06/30/23	Method: 8081A/80	82		Method 3540 Date: 06/28/23	С
Aldrin		< 8.0	8.0	ug/kg	
Aroclor 1016		< 80.0	80.0	ug/kg	
Aroclor 1221		< 80.0	80.0	ug/kg	
Aroclor 1232		< 80.0	80.0	ug/kg	
Aroclor 1242		< 80.0	80.0	ug/kg	
Aroclor 1248		< 80.0	80.0	ug/kg	
Aroclor 1254		< 160	160	ug/kg	
Aroclor 1260		< 160	160	ug/kg	
alpha-BHC		< 2.0	2.0	ug/kg	
beta-BHC		< 8.0	8.0	ug/kg	
delta-BHC		< 8.0	8.0	ug/kg	
gamma-BHC (Lindane)		< 8.0	8.0	ug/kg	
alpha-Chlordane		< 80.0	80.0	ug/kg	
gamma-Chlordane		< 80.0	80.0	ug/kg	
4,4'-DDD		< 16.0	16.0	ug/kg	
4,4'-DDE		< 16.0	16.0	ug/kg	
4,4'-DDT		< 16.0	16.0	ug/kg	
Dieldrin		< 16.0	16.0	ug/kg	
Endosulfan I		< 8.0	8.0	ug/kg	
Endosulfan II		< 16.0	16.0	ug/kg	
Endosulfan sulfate		< 16.0	16.0	ug/kg	
Endrin		< 16.0	16.0	ug/kg	
Endrin aldehyde		< 16.0	16.0	ug/kg	
Endrin ketone		< 16.0	16.0	ug/kg	
Heptachlor		< 8.0	8.0	ug/kg	
Heptachlor epoxide		< 8.0	8.0	ug/kg	
Methoxychlor		< 80.0	80.0	ug/kg	
Toxaphene		< 160	160	ug/kg	
Total Metals Analysis Date: 06/30/23	Method: 6010C		Preparation Method 3050B Preparation Date: 06/27/23		
Arsenic		8.0	1.0	mg/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Client:	CGMT, INC.	Date Collected:	06/22/23			
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	10:00			
Sample ID:	GHAW #3	Date Received:	06/23/23			
Sample No:	23-5368-003	Date Reported:	07/06/23			
Results are reported on a dry weight basis.						

Analyte		Result	R.L.	Units	Flags
Total Metals Analysis Date: 06/30/23	Method: 6010C		Preparation Preparation I	Method 305 Date: 06/27/23	60B
Barium		97.3	0.5	mg/kg	
Cadmium		< 0.5	0.5	mg/kg	
Chromium		24.9	0.5	mg/kg	
Lead		14.5	0.5	mg/kg	
Selenium		< 1.0	1.0	mg/kg	
Silver		< 0.2	0.2	mg/kg	
Total Mercury Analysis Date: 06/29/23	Method: 7471B				
Mercury		< 0.05	0.05	mg/kg	
pH @ 25°C, 1:2 Analysis Date: 06/29/23 10:48	Method: 9045D				
pH @ 25°C, 1:2		8.14		Units	
Cyanide, Total Analysis Date: 06/30/23	Method: 9010B/90)14			
Cyanide, Total		< 0.10	0.10	mg/kg	

6/23/23 081	shed By: Jenny Nake Date/Time 6/25/23 Callor By: 1/m & Date/Time shed By: 1/m & Date/Time Date/Time	Relinquis Relinquis
	in the Go h	
	tructions: * (SDRYS) *	Notes an
	Cooler Temperature: 0.1-6ºC Yes No. Sample Refrigerated: Yes Yo Program: TACO/SRP CCDD NPDES LUST Received within 6 hrs. of collection: Refrigerator Temperature: C Ice Present: Yes No. You Program: TACO/SRP CCDD NPDES LUST	Cooler Te Received Ice Prese
	FOR LAB USE ONLY: LAB COURIER USE ONLY:	FOR LAB
		6
EQP-	12/22 CHIPU #3 SXXXXXXX	200
-002	2/23 CHAW #2 SXXXXXXX	6 22
23-5368-001	N	622
Lab I.D.	Date/Time Taken Sample Description Matrix C Comments	Date/Ti
	Project I.D.: WHILETUN ASSOCIATES, INC. Project I.D.: WHILETUNG, ILLINIOIS P.O.#. 2320331 ILLI	Project P.O. #:
new thecar	Report To BUACE SLOPN PERTIK PARE/ LE By: RO	Naperville, Phone: (63 E-mail: fir IEPA Certi
F0003 diz	First Environmental Laboratories Street Address: 60 MRTIN UPNE 1 1600 Shore Road, Suite D City: ELE GROVE MUDDE State: 10	First En 1600 Shore
Page of pgs	First CHAIN OF CUSTODY RECORD	

July 14, 2023

Mr. Blake Sloan CGMT, INC. 60 Martin Lane Elk Grove Village, IL 60007

Project ID: 23E0331, Gewalt Hamilton Associates, Inc First Environmental File ID: 23-5698 Date Received: June 23, 2023

Dear Mr. Blake Sloan:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number:

1002922023-10: effective 03/07/2023 through 02/28/2024.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200.

Sincerely,

Elfha

Neal Cleghorn Project Manager

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

CGMT, INC.

Lab File ID: 23-5698

Date Received: June 23, 2023

Project ID: 23E0331, Gewalt Hamilton Associates, Inc

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The results in this report apply to the samples in the following table:

Laboratory Sample ID	Client Sample Identifier	Date/Time	Collected
23-5698-001	GHAW #3	06/22/23	10:00

Sample Batch Comments:

Sample acceptance criteria were met.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

CGMT, INC.

Lab File ID: 23-5698

Date Received: June 23, 2023

Project ID: 23E0331, Gewalt Hamilton Associates, Inc

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

The following is a definition of flags that may be used in this report:

Flag	Description	Flag	Description
А	Method holding time is 15 minutes from collection. Lab an	alysis	was performed as soon as possible.
В	Analyte was found in the method blank.	L	LCS recovery outside control limits.
<	Analyte not detected at or above the reporting limit.	М	MS recovery outside control limits; LCS acceptable.
С	Sample received in an improper container for this test.	Р	Chemical preservation pH adjusted in lab.
D	Surrogates diluted out; recovery not available.	Q	Result was determined by a GC/MS database search.
Е	Estimated result; concentration exceeds calibration range.	S	Analysis was subcontracted to another laboratory.
G	Surrogate recovery outside control limits.	Т	Result is less than three times the MDL value.
Н	Analysis or extraction holding time exceeded.	W	Reporting limit elevated due to sample matrix.
I	ICVS % rec outside 95-105% but within 90-110%		
J	Estimated result; concentration is less than routine RL but greater than MDL.	N	Analyte is not part of our NELAC accreditation or accreditation may not be available for this parameter.
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	ND	Analyte was not detected using a library search routine. No calibration standard was analyzed.

Analytical Report

Client:	CGMT, INC.	Date Collected:	06/22/23
Project ID:	23E0331, Gewalt Hamilton Associates, Inc	Time Collected:	10:00
Sample ID:	GHAW #3	Date Received:	06/23/23
Sample No:	23-5698-001	Date Reported:	07/14/23
-			

Analyte		Result	R.L.	Units	Flags
TCLP Extraction Analysis Date: 07/12/23	Method: 1311				
TCLP Extraction		Complet	te		
TCLP Metals Method 1311 Analysis Date: 07/14/23	Method: 6010C		Preparation Preparation E	Method 301 Date: 07/13/23	1 0A 3
Chromium		< 0.005	0.005	mg/L	

	CHAIN OF CUSTODY RECORD
Environmental Laboratories, Inc.	
First Environmental Laboratories 1600 Shore Road, Suite D	Street Address: OU MAKING UMANY State: 14 Zip: 60007
Naperville, Illinois 60563 Phone: (630) 778-1200 • Fax: (630) 778-1233 E-mail: firstinfo@firstenv.com • www.firstenv.com	Phone: 505 - 1111 e-mail: Send Report To BLACE SLOPE PERTIK PARE / LENNY - MACCO
IEPA Certification #100292	
Project I.D. WHERLING ASSOCIATES	1 1 1 1 1
232033	-
	A to Late to the to
n Sample Description	Comments
6/22/23 CHAW #1	VXXXXXX 33-5568-d
6/22/23 CHAW #2	SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C122/22 CHARC #3	SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
: OV an	
FOR LAB USE ONLY:	LAB COURIER USE ONLY:
n l	Sample Refrigerated: Yes Vo- Refrigerator Temperature: C *Matrix Code Key: S-Soil SL-Sludge DW-Drinking Water WW-Wastewater GW-Groundwater WIPE-Wipe O-Other
Notes and Special Instructions:) 7%
Relinquished By: Comment Nake Date Time	G/25/23 CALZ IPIN & Grader 6/23/23 OFF
Relinquished By: Date/Time	e Received By: Date/Time
Rev. 6/19	

December 19, 2022

Gewalt Hamilton Associates, Inc. 625 Forest Edge Drive Vernon Hills, IL 60061

Attn: Mr. Dan Strahan, P.E.

Job No. 22044

Re: MWRD Compensatory Storage Investigation, north of Palatine Road and east of Schoenbeck Road, Prospect Heights, Illinois

Dear Mr. Strahan:

The following report presents the results of the geotechnical investigation performed for the above project. The information in this report is based on four (4) soil borings (B-1 to B-4) completed at the site. The results of the borings, along with a location diagram and general notes, are included in this report. The boring locations were located in the field by O'Brien & Associates, Inc. personnel without the aid of sophisticated surveying techniques and as such are considered to be approximate.

The purpose of this report is to describe the subsurface conditions encountered in the borings, to analyze and evaluate the data obtained, and to evaluate the subsurface conditions for use as compensatory stormwater storage areas. It is our understanding that the compensatory storage area will consist of two (2) connected storage ponds in an open field area that will require excavating approximately 4,400 cubic yards of soil. It is also our understanding that the excavated soils from this site are to be used as an engineered fill at a different location.

The soil borings were performed on November 23, 2022, with a track mounted drilling rig and were advanced by means of hollow stem augers. Representative samples were obtained employing split spoon sampling procedures in accordance with ASTM Specification D-1586. Samples obtained in the field were returned to our laboratory for further examination and testing. Split spoon sampling involves driving a 2.0 inch outside diameter split-barrel sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N) and is included on the boring logs. The N value is an indication of the relative density and strength of the soil.

The soil testing program consisted of performing water content, dry density and unconfined compressive strength (Rimac) or calibrated hand penetrometer tests on the cohesive samples recovered. Water content tests were performed on the surficial topsoil samples recovered. These tests were performed upon representative portions of the samples obtained in the field. In addition, composite samples were recovered depths of 3.5' to 10.0' from borings B-1 and B-2 and from borings B-3 and B-4 to be tested for Laboratory Compaction Characteristics Using a Mechanical Compactor with Standard Effort (Standard Proctor, ASTM D-698). The results of the soil tests, along with a visual classification of the material based upon both a textural analysis and the Unified Soil Classification System, are indicated on the boring logs.

OBA Job No. 22044

Specific soil conditions encountered in the borings are indicated on the soil boring logs. As indicated on the logs, a thin surficial topsoil that was generally wet (moisture content = 24% to 30%) was encountered at all of the borings. At boring B-1 to B-3, the topsoil was underlain by stiff to hard clay soils that extended to the maximum depth of the borings, 10.0' below ground surface. At borings B-1 and B-2, the clay soils underwent a color change from brown and gray to gray at depths of 4.0' and 8.5' respectively and at boring B-3, the clay soils were noted to be brown and gray to the full depth of the boring. At boring B-4, the topsoil was underlain by a 2.0' layer of stiff, brown, gray and black clay that appeared to be fill that was underlain by a 2.5' layer of very stiff to hard brown and gray clay that was underlain by a stiff to hard gray clay that extended to the maximum depth of the boring, 10.0'. The stratification lines shown on the boring logs represent the approximate boundary between soil types, and the actual transition may be gradual.

Water level readings were taken during drilling and after the completion of the borings. Groundwater was encountered at a depth of 9.0' below ground surface during drilling at boring B-1 and no water was encountered during drilling at any of the other borings. These readings are shown on the boring logs and, along with local hydrogeologic information and the color change from brown and gray to gray, indicate that the phreatic surface is at or below a depth of approximately 4.0' to 6.0' below ground surface. Fluctuations in the amount of water accumulated and in the hydrostatic water table can be anticipated depending upon variations in precipitation and surface runoff. The water level observations provide an approximate indication of the groundwater levels at the time the borings were drilled. Longer term observations using piezometers would be necessary to more accurately establish groundwater conditions at the site.

The results of the borings indicate the presence of clay soils below a relatively thin surficial topsoil layer. After topsoil stripping, the excavated material will consist of a lean clay that will be suitable for use as an engineered fill. The in-situ moisture content is slightly higher than the optimum moisture contents for the Proctors and some discing and aeration may be required during placement to reduce the moisture contents of the excavated clay.

The clay soils are relatively impermeable and are not free draining soils. The storage area will need to be provided with an outlet to allow the stored water to drain. Side slopes of 3 horizontal to 1 vertical or flatter constructed in the clay soils will be stable. Steeper side slopes will require further evaluation.

As of July 30, 2010, Illinois Public Act 096-1416 set forth disposal requirements for "clean" soil that require sampling/analysis and a professional engineer certification if soils are to be disposed of offsite. An investigation should be performed to determine if the excavated soil is to suitable for off-site disposal.

The information in this report does not reflect any variations which may occur away from the borings or across the sites. In addition, the soil samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report.

The information in this report does not reflect any variations which may occur away from the borings or across the site. In addition, the soil samples cannot be relied on to accurately reflect

OBA Job No. 22044

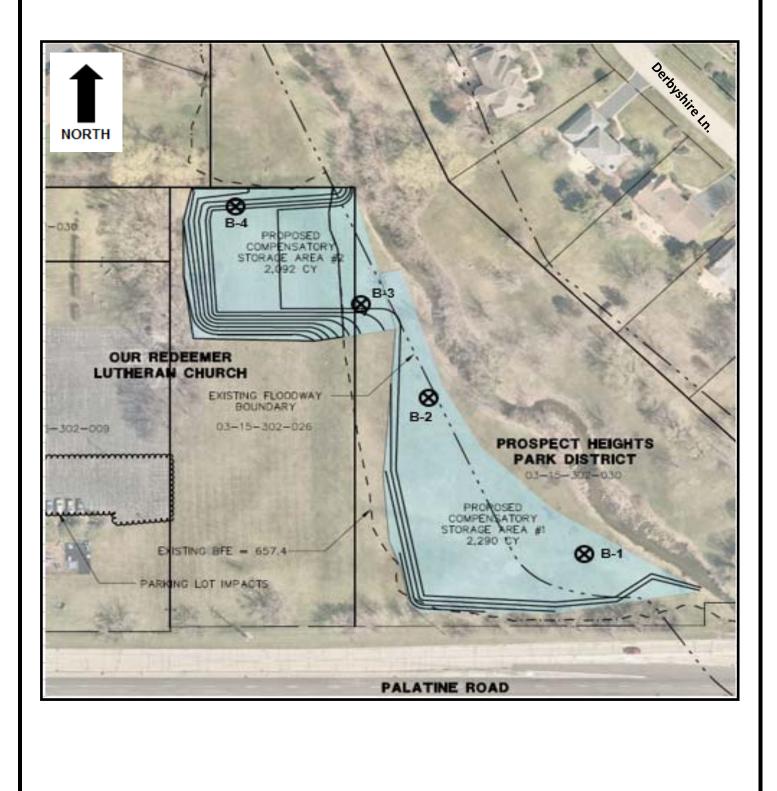
the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are intended or made. Also note that O'Brien & Associates, Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of the report's subsurface data or engineering analyses without the express written authorization of O'Brien & Associates, Inc.

If there are any questions with regard to the information submitted in this preliminary report, or if we can be of further assistance to you in any way, please do not hesitate to contact us.

Very truly yours,

O'BRIEN & ASSOCIATES, INC.


Dixon O'Brien, P.E. Vice President

DOB/jw/vb

enc.

O'BRIEN & ASSOCIATES, INC.

SOIL BORING LOCATION DIAGRAM

Proposed MWRD Storm Water

Compensatory Storage Areas

Palatine & Schoenbeck Rds

Prospect Heights, Illinois

O'BRIEN & ASSOCIATES, INC. CONSULTING ENGINEERS 766 W. ALGONQUIN ROAD ARLINGTON HEIGHTS, ILLINOIS 60005 (847) 398-1441 • (847) 398-2376

PREPARED BY	VPB
APPROVED BY	DOB
DATE	11/29/2022
JOB NO.	22044

	LOG OF BORING NO. B-1										
						BORING LOCATION See Boring Location Diagram					
				ATION noenbeck Roads, Prospect Heights, IL	PRC MW)JECT DE RD Compe	SCRIPTIC nsatory S)N Storage			
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL		STANDARD PENETRATION "N"	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
				GROUND SURFACE ELEVATION		S					
	1	AS		6" TOPSOIL wet					30		
	2	ss		LEAN CLAY—brown & gray— very stiff (CL)		9	2.5	2.8	19	109	
5.0	3	SS		LEAN CLAY-gray- very stiff to hard (CL)		13	4.25	3.5	17	112	
	4	SS				20	4.5	4.2	17	109	
10.0	5	SS		\bigtriangledown	▼	15	3.0	2.7	17	117	
	END OF BORING										
14/1					BA				G STARTE		vember 23, 2022
				ile Drilling $-9.0'$				RIG	G COMPLE Geo		REMAN SRN
	Vater Level After Boring −9.0' CONSULTING E 766 W. ALGONQUIN RD./ARLII (847)398-1441 * FAX			G EN	GINEERS	5	DRAW		B AF	PROVED DOB	

	LOG OF BORING NO. B-2										
					BORING LOCATION See Boring Location Diagram						
				ATION noenbeck Roads, Prospect Heights, IL			SCRIPTIC nsatory S				
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL		STANDARD PENETRATION "N"	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
				GROUND SURFACE ELEVATION		S					
	1	AS		6" TOPSOIL wet					34		
	2	ss		SILTY CLAY-brown & gray- stiff to very stiff (CL/ML)		4	2.0	1.0S @9%	19	112	
5.0	3	SS				13	1.75	1.8	15	120	
	4	SS				19	3.5	3.7	14	123	
10.0	5	ss		LEAN CLAY-gray- very stiff (CL)		11	3.0	2.1	18	112	
				END OF BORING							
<u> </u>					3A				G STARTE		vember 23, 2022
				le Drilling Dry	-			RIG	G COMPLE Geo		vember 23, 2022 DREMAN SRN
	Vater Level After Boring Dry CONSULTING I 766 W. ALGONQUIN RD./ARLI (847)399-1441 * FAX			ENC	JINEERS	5	DRAW		B AF	PROVED DOB HEET 1 OF 1	

	LOG OF BORING NO. B-3										
						ING LOC Boring L	ATION ocation D	iagram			
				ATION noenbeck Roads, Prospect Heights, IL	PRO MWR	JECT DE 2D Compe	SCRIPTIC insatory S)N Storage			
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL		STANDARD PENETRATION "N"	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
	1	AS		GROUND SURFACE ELEVATION TOPSOIL					24		
				LEAN CLAY-brown & gray-			0.5	0.5		0.5	
	2	SS		stiff to hard (CL) we	t	7	2.5	2.5	25	95	
5.0	3	SS				4	1.0	1.1	23	104	
	4	SS				8	1.75	1.0	21	106	
10.0	5	ss				15	4.5	4.2	17	106	
				END OF BORING							
Wat-					3A				G STARTE G COMPLE		vember 23, 2022 vember 23, 2022
				er Boring Dry				RIG	G COMPLE Geo		REMAN SRN
	/ater Level After Boring Dry ♥ O'BRIEN & ASS CONSULTING 766 W. ALGONQUIN RD./ARL (847)398-1441 * FAX				ENC	GINEERS	S	DRAW		B AF	PROVED DOB

				LOG OF B	ORIN	G NO.	B-4				
						NG LOC Boring L	ATION ocation D	iagram			
					SCRIPTIC nsatory S						
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL		STANDARD PENETRATION "N"	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
				GROUND SURFACE ELEVATION		Ś					
	1	AS		TOPSOIL FILL wet					25		
	2 SS LEAN CLAY-brown, gray & black- stiff (CL) FILL					10	1.75	1.9	21	107	
5.0	3	SS		LEAN CLAY-brown & gray- very stiff to hard (CL)		10	3.75	4.4	16	108	
	4 SS LEAN CLAY-gray- stiff to hard (CL)				17	4.25	4.2	20	105		
10.0						9	1.5	1.1	22	105	
	END OF BORING								G STARTE		vember 23, 2022
Wate				le Drilling Dry	3A	h i			G COMPLE		vember 23, 2022
				er Boring Dry	OCL4	ATES, IN	IC.	RIG	Geo		REMAN SRN
	CONSULTING E CONSULTING E 766 W. ALGONQUIN RD./ARLI (847)399–1441 * FAX			· ENC	JINEERS	5	DRAWN OBA J	N VPB IOB No. 2		PROVED DOB	

GENERAL NOTES

CLASSIFICATION

Chicago Building Code Textural Soil Classifications and Unified Soil Classifications are used.

Cohesionless Soils

Relative Density	No. of Blows per foot N
Very Loose	0 to 4
Loose	4 to 10
Medium	10 to 30
Dense	30 to 50
Very Dense	Over 50

TERMINOLOGY

Streaks are considered to be paper thick. **Lenses** are considered to be less than 2 inches thick. **Layers** are considered to be 6 inches or less thick. **Stratum** are considered to be greater than 6 inches thick.

Cohesive Soils

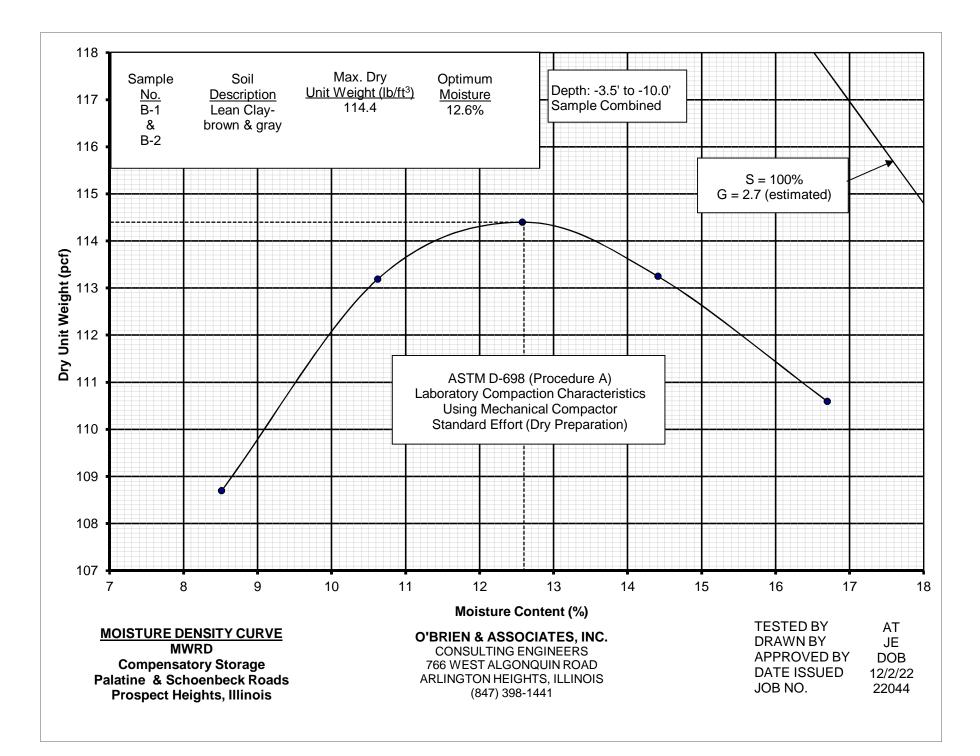
Consistency	Unconfined Compressive Strength - qu (tsf)
Very Soft	Less than 0.25
Soft	0.25 - 0.5
Medium	0.5 - 1.0
Stiff	1.0 - 2.0
Very Stiff	2.0 - 4.0
Hard	Over 4.0

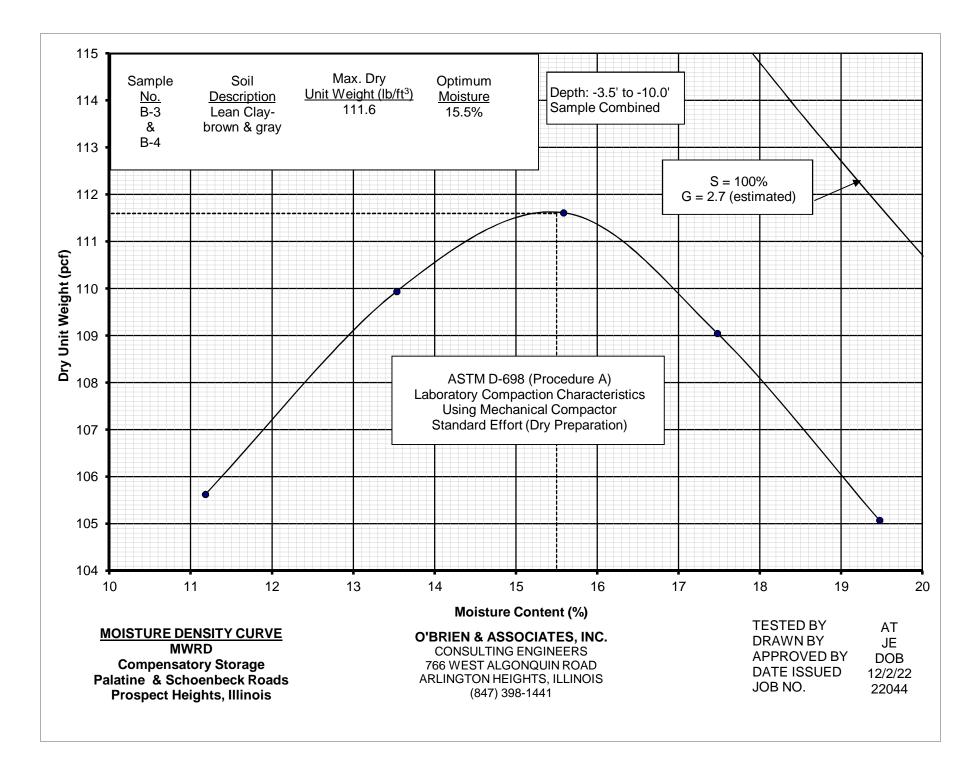
DRILLING AND SAMPLING SYMBOLS

- SS: Split Spoon 1-3/8" I.D., 2" O.D.
- ST: Shelby Tube 2" O.D., except where noted
- AS: Auger Sample
- DB: Diamond Bit NX: BX: AX
- CB: Carboloy Bit NX: BX: AX
- OS: Osterberg Sampler

HS: Housel Sampler WS: Wash Sample FT: Fish Tail RB: Rock Bit WO: Wash Out

Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon


WATER LEVEL MEASUREMENT SYMBOLS


WL:	Water
WCI:	Wet Cave In
DCI:	Dry Cave In

WS: While sampling

- WD: While Drilling
- BCR: Before Casing Removal
- ACR: After Casing Removal
 - AB: After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several day's observation, and additional evidence on ground water elevations must be sought.

GEOTECHNICAL INVESTIGATION for the MWRDGC Flood Control Project Willow Road, Hillcrest Drive and Owen Court Roadway Improvements at McDonald Creek Tributary A Prospect Heights, Illinois

O'BRIEN & ASSOCIATES, INC. CONSULTING ENGINEERS 1235 E. DAVIS ST./ARLINGTON HTS., IL 60005 (847)398-1441 * FAX(847) 398-2376

April 3, 2015

Globetrotters Engineering Corporation 300 S. Wacker Drive, Suite 400 Chicago, IL 60606

Attention: Mr. Dave Handwerk, P.E.

OBA Job No. 14652

Re: MWRDGC Flood Control Project, Willow Road, Hillcrest Drive and Owen Court Roadway Improvements at McDonald Creek Tributary A, Prospect Heights, Illinois

Dear Mr. Handwerk:

Please find enclosed the results of the geotechnical investigation for the proposed improvements. This report has been based upon information regarding plans for the proposed improvements and subsurface information obtained in six (6) borings.

If there are any questions with regard to the information submitted in this report, or if we can be of further assistance to you in any way, please do not hesitate to contact us.

Very truly yours,

O'BRIEN & ASSOCIATES, INC.

No Elle

Dixon O'Brien, P.E. Vice President

DOB/vpb enc.

11/30/15

TABLE OF CONTENTS

	2
EXISTING CONDITIONS/PROPOSED IMPROVEMENTS	3
GEOLOGY	4
	5
SUBSURFACE INVESTIGATION PROCEDURES	6
TESTING PROGRAM	7
SUBSURFACE CONDITIONS	7
ANALYSIS AND RECOMMENDATIONS	9
GENERAL QUALIFICATIONS 1	3

APPENDIX A - Location Map
APPENDIX B - Boring Location Diagram
APPENDIX C - Boring Logs and General Notes
APPENDIX D - Laboratory Test Results
APPENDIX E - Patrick Engineering and Layne-Western Co. Boring Logs

INTRODUCTION

We have completed the geotechnical investigation for the proposed Willow Road, Hillcrest Drive and Owen Court Roadway Improvements at McDonald Creek Tributary A, Prospect Heights, Cook County, Illinois. The investigation is based on the results of six (6) borings (P-1 through P-6) performed along the project limits. Borings P-1 and P-2 were performed on Willow Road, borings P-2 through P-5 were performed on Hillcrest Drive and boring P-6 was performed on Owen Court. In addition, previous borings performed by Patrick Engineering (Project No. 20708.025) and Layne-Western Co. (Contract C-715N) were also reviewed and used to develop our recommendations.

The Patrick borings were performed on the north side of Willow Road in 2008 for the Cook County Highway Department and the Layne-Western borings were also performed on the north side of Willow Road in 1968 for the existing MWRDGC O'Hare Intercepting Sewer. The MWRDGC intercepting sewer is a 42" diameter sewer located just north of the existing road with an invert elevation of approximately 638.5.

The soil boring program was developed by Globetrotters, Inc. based on discussions with O'Brien & Associates. The boring locations were field located by O'Brien & Associates, Inc. personnel at the proposed locations using topographic drawings and hand measuring equipment. The boring elevations, stations and offsets were obtained from topographic and plan and profile drawings provided by Globetrotters. As required, the proposed boring locations were slightly adjusted in the field to meet site conditions by OBA personnel. The project location is shown on the project location map included in Appendix A and the boring locations are shown on the location diagram included in Appendix B.

Job No. 14652 - 3 - April 3, 2015 This report includes recommendations pertaining to the pavement design, pavement subgrade, a description of soil and water table conditions, and general construction considerations as appropriate to the site, copies of the boring logs and laboratory test results.

EXISTING CONDITIONS/PROPOSED IMPROVEMENTS

The existing roads are two-lane bituminous roadways with open drainage. A visual observation of the pavement showed primarily climatic related longitudinal and transverse cracking with some joint raveling. There were no significant potholes (load-related distress), and the pavement appeared to be in good to very good condition.

The current plan is to raise the roadway grades and reconstruct the roadways. The roadway improvements are part of the McDonald Creek Tributary A Flood Control Improvements and involve raising the roadway grades approximately 2 to 4 feet to approximately elevation 653 to alleviate flooding conditions. Normal water level of the adjacent ponds on either side of Willow Road is at 647.5. New culverts will also be installed under Willow Road, with the invert elevations of the new culverts at approximately 645.0.

The Willow Road design pavement section consists of 7.75 inches full depth HMA and 10.0 inches Type A aggregate. The Hillcrest Drive and Owen Court design pavement section consists of 3.0 inches of HMA and 8.0 inches Type A aggregate.]

<u>GEOLOGY</u>

According to the 1971 ISGS Circular #460: Summary of the Geology of the Chicago Area/ISGS Geologic Materials to a Depth of 20' - North Cook County, the project site is located in an area where the surficial soils are generally categorized as Cahokia Alluvium deposits overlying soils belonging to the Wadsworth Till Member of the Wedron Formation. Cahokia Alluvium soils generally consist of recent flood plain deposits of silt, sand and gravel which can be organic. Wadsworth Till soils were deposited during Woodfordian Substage of the Wisconsinan glaciation between 12,500 to 22,000 years ago and generally consist of gray clayey and silty clay tills.

The ISGS Circular C542 15 Meter Stack Map confirms that surficial soils in the vicinity of the project corridor are as noted above and that bedrock is in excess of 50.0-ft below ground surface. A review of ISGS well records reviewed on-line confirms that bedrock is encountered in excess of 100' below ground in the vicinity of the project.

According to the 1984 ISGS Berg Circular #532: "Potential for Contamination of Shallow Aquifers in Illinois, the project site is located in an area which is primarily an AX Zone and the areas around the site are categorized as an E Zone. AX Zones are defined as an area with alluvium stream deposits of gravel, sand, silt and clay which are variable in composition and thickness. E Zones are defined as an area with in excess of 50-ft of relatively impermeable silty or clayey tills with no evidence of interbedded granular layers.

The Wetland Inventory database reviewed on-line at the US Fish & Wildlife Service website indicates that Willow Road bisects two (2) wetlands including an approximately 13.6 acre excavated area to the north and an approximately 6.3 acre excavated wetland located at

Job No. 14652 - 5 - April 3, 2015 the southtern terminus of Hillcrest Drive and Willow Road. Hillcrest Drive and Owen Court are located immediately adjacent to the northern boundary of the northern wetland area. Each of the wetland areas are noted to be Palustine System-Unconsolidated Bottom Class wetlands and the Water Regime is noted to be Intermittently Exposed.

The USDA Natural Resources Conservation Service Soil Survey database indicates that surficial soils in the vicinity of the project site consist of Markham-Ashkum-Beecher complex soils. The general soil horizon associated with this classification includes thin deposits of silt loams overlying silty clay loams. These soils are not overly organic and potential frost action is rated as high. No areas of organic soils were noted on the soil survey maps.

CLIMATIC CONDITIONS

The climate within the area of this project site falls within the temperate humid, continental range and is characterized by cold conditions in the winter and warm conditions in the summer. The winter average daily temperature is 25° F and the average daily minimum temperature is 17° F. The summer average temperature is 71° F and the summer average daily maximum temperature is 81° F. The total annual precipitation for this area is 35.8" with approximately 63% falling between April and September. The average seasonal snowfall for this area is 38.7".

Local Climatatological Data, as measured at O'Hare International Airport (ORD), for the three (3) month period prior to and during drilling, including total precipitation, average temperature and snowfall are summarized below:

MONTH-Yr	ppt (in)		Temp (°F)		Snow (in)			
	Total	Departure From Norm	Average Temp.	Departure From Norm	Total	Monthly Norm		
Sept-15	2.71	-0.5	63.9	-0.7	0.0	0.0		
Oct-15	2.48	-0.67	52.0	-0.5	0.1	0.3		
Nov-15	1.41	-1.74	33.6	-6.7	2.8	1.9		
Dec-15	0.79	-1.46	32.0	4.3	Trace	8.8		
Jan-15	1.41	-0.32	22.3	-1.5	13.9	8.8		
Feb-15	1.45	-0.34	14.6	-13.1	26.8	8.3		
borings P-1 and P-2 performed on 12/9/14 and P-3 to P-6 performed on 2/20/15								

Total precipitation during the three months prior to each drilling event was below normal; however, total snowfall was higher than normal. Temperatures were also generally below normal; however, during the month of December, 2014 temperatures were above normal. The climatic conditions encountered prior to and during drilling suggest that the soils should be drier than normal moisture levels.

SUBSURFACE INVESTIGATION PROCEDURES

Borings P-1 and P-2 were performed on December 9, 2014, with a CME-55 truck mounted drill rig and borings P-3 through P-6 were performed on February 20, 2015 using a Mobile B-57 drilling rig. The borings were advanced by means of hollow stem augers. Representative soil samples were obtained in the borings employing split spoon sampling procedures in accordance with AASHTO T-206. Samples obtained in the field were returned to our laboratory for further examination and testing.

TESTING PROGRAM

The test procedures were performed in accordance with test procedures discussed in the IDOT Geotechnical Manual. All split-spoon samples obtained from the drilling operation were visually classified in the field.

The general soil testing program for the borings consisted of performing water content, density and calibrated penetrometer tests on the cohesive samples recovered. Water content tests were performed on the non-cohesive samples. In addition to the above testing, laboratory torvane shear tests were performed on representative samples of the softer clay and organic soils. These tests were performed upon representative portions of the samples obtained in the field. The results of the above testing, along with a visual classification of the material based upon both the Illinois textural classification and the American Association of State Highway Transportation Officials (AASHTO), are indicated on the boring logs in Appendix C.

In addition to the above general soil testing, Particle Size Analysis (AASHTO T-88) and Liquid Limit, Plastic Limit and Plasticity Index of Soils (AASHTO T89/T90) tests were performed on representative soil samples obtained from the borings. Organic content tests (AASHTO T267) were performed on representative portions of the organic soils recovered. The results of these additional tests are presented in Appendix D.

SUBSURFACE CONDITIONS

Specific conditions encountered in the borings are indicated on the boring logs included in

Job No. 14652 - 8 - April 3, 2015 Appendix B. Copies of the previous borings performed by Patrick Engineering (Project No. 20708.025) and Layne-Western Co. (Contract C-715N) are included in Appendix E. As indicated on the logs, fill materials were encountered below the pavement in all of the borings except boring P-4 and extended to a depth of 4.0' to 11.0' below ground surface. The fill materials consisted primarily of clay soils with varying percentages of sand, gravel, brick, broken concrete and topsoil. In boring P-4, a brown, hard clay was encountered below the pavement and extended to a depth of 3.5' below ground surface. The brown clay was underlain by a loose sandy loam extending to a depth of 6.0', which was underlain by a gray clay that extended to the maximum depth of boring P-4.

The fill materials in borings P-1 to P-3, P-5 and P-6 were typically underlain by high moisture content peat and organic clay soils that extended to depths of 8.5' to 28.5' below ground surface. The moisture content of these organic soils varied from 39% to 219% and the organic content ranged from 7% to 28%. The organic soils were generally underlain by stiff to very stiff clay soils that extended to the maximum depth of the borings. In boring P-2, a medium dense sand was encountered from 16.0' to 28.5' below ground surface. The stratification lines shown on the boring logs represent the approximate boundary between soil types, and the actual transition may be gradual or vary between sampling depths.

Water level readings were taken during and immediately following the drilling operations and P-5 was noted to be dry. Water was noted in the remaining borings at depths of 3.5' to 12.0' below ground surface. These readings are shown on the boring logs and, along with the proximity to the adjacent ponds, it is expected that ground water will be present at or near the water elevation of the ponds. Fluctuations in the amount of water accumulated Job No. 14652 - 9 - April 3, 2015 and in the level of the hydrostatic water table can be anticipated depending upon variations in precipitation and surface runoff. The water level observations provide an approximate indication of the groundwater levels at the time the borings were drilled. Longer term observations using piezometers would be necessary to more accurately establish groundwater conditions at the site.

ANALYSIS AND RECOMMENDATIONS

Materials encountered at the anticipated subgrade elevations along the pavement improvements consist of hard clay soils or miscellaneous fill materials that should generally be suitable for support of the proposed pavement. However, the results of the borings and a review of previous boring data indicate that the majority of the existing roadways were constructed over thick, compressible organic deposits. The organic deposits were variable in nature and with the thickness of the layers found to vary from 4.5' in boring P-5 to 20.0' in borings P-3 and P-6. Based on the addition of 2' to 4' feet of new fill on the roadway, settlement on the order of 8" to 12" is possible depending upon the thickness and character of the organic deposit below the roadway, and amount of fill placed as part of the roadway improvements. Because the organic layer was variable in both thickness and depth, variable settlement is expected to occur over the roadway, although any differential movement is expected to be gradual and noticeable only over large distances. In addition, a significant portion of settlement in organic soils is secondary settlement that occurs over relatively long periods of time.

Job No. 14652 - 10 - April 3, 2015 Willow Road is a low volume, secondary road and given the depth of the organic soils and elevation of the water table, removal and replacement of the organic soils is not considered to be an economical alternative. Ground improvement (aggregate columns) can be considered but is not expected to be economical because of the depth of ground improvement that will be required.

Lightweight fill (lightweight slag or lightweight cellular concrete) can also be considered to reduce the settlement. An evaluation was performed to determine if the existing fill could be removed and replaced with lightweight fill and balance the new embankment/roadway loads with existing loads. The evaluation was performed assuming that the long term water table or flood condition was at the top of the new pavement (elevation 653). To prevent bouyancy issues, removal and replacement on the order of 6.0' to 7.0' would be required to balance the new loads with the existing loads and this alternative is not considered to be economically feasible.

The removal and replacement alternative is not recommended for several reasons. First, for excavations below an elevation of 647.5 (NWL) groundwater infiltration will be an issue and sheeting will be needed for excavations below the NWL elevation. Also, in most areas there is only 5' to 6' of fill present over the peat, which is not enough normal weight fill to allow the loads to balance (given the new pavement design). Finally, it would be difficult to place the lightweight fill directly on the peat/organic clay without installing a stabilization layer.

Lightweight fill could be used for the new fill required for construction of the roadway, reducing the loads on the underlying organic deposits an settlement. The required unit

Job No. 14652 - 11 - April 3, 2015 weight of the lightweight fill will vary depending upon the fill thickness. For a factor of safety (FS) of 1.25 for bouyancy, the lightweight fill should have a minimum unit weight of 60 pcf for a 4' fill section (3' of lightweight fill and 12" pavement section). Settlement using a lightweight fill is expected to be approximately ½ the settlement of normal weight fill (4" to 6" maximum settlement).

The new roadway grades should be designed to allow some settlement to occur (8" to 12" in the areas with the deeper peat/organic deposits). A bituminous pavement section is recommended rather than a PCC or section because of the ability of bituminous pavements to better handle deflections without significant distress occurring to the pavement. Provisions should be made for additional repairs and/or resurfacing to re-adjust grades after the roadway has settled. In the area of the new culverts, the additional loads from the new roadway will be less because of the soil excavated for the culverts, with less settlement occurring in this area.

For construction of the roadway, consideration can be give to leaving the existing pavement in place and placing the fill on existing pavement. The existing asphalt surface can be removed or broken into smaller pieces before placement of additional fill.

In areas where the existing pavement grades are at or near proposed grades, it is possible that areas of softer soils may be encountered during construction. Any soft or unsuitable soils should be removed and undercut areas should be backfilled with PGE,s (IDOT Special Provision for Aggregate Subgrade Improvement). Job No. 14652 - 12 - April 3, 2015 A plan note should be added that the actual need for remedial treatment should be determined in the field at the time of construction by the geotechnical engineer. Undercutting should be performed in such a manner as to minimize disturbances to the undercut subgrade. Heavy equipment traffic directly on the undercut subgrade should be minimized. Evaluation of soils in the field should be performed based on the criteria presented in the IDOT Subgrade Stability Manual.

Care should be taken in the design and construction of paved areas to provide rapid drainage of surface water and to develop surface drainage patterns that will divert water away from the pavement edges. When water is allowed to pond on or adjacent to the pavement, the subgrade may become saturated and accelerate pavement deterioration.

The fill materials placed below the pavement should be placed and compacted in lifts not exceeding 8 inches in loose thickness. Each fill lift should be compacted to a minimum of 95% of the material's maximum dry density as determined by AASHTO test method T-99 or 70% relative density (ASTM D-4253 and D-4254).

Fill materials (if lightweight fill is not used) should be in accordance with section 6.2 of the IDOT Geotechnical Manual. In particular, soils shall be tested and conform to the required testing and permissible limits as defined in table Table 6-1 in the IDOT Geotechnical Manual. Low plasticity cohesive soil should have a liquid limit of 50% or less and a plasticity index 12% or greater, and the moisture content of the fill should not vary by more than -3 to +3 percent of the optimum moisture content.

Job No. 14652 - 13 - April 3, 2015 Regarding the new culverts, it may be possible to install the culverts without dewatering by overexcavating 12" to 18" below the invert of the culvert, placing a stabilization stone such as IDOT CA-1 and then installing a precast concrete, HDPE or corrugated metal culvert. Some differential settlement is expected below the culverts and the culverts should be designed to accommodate some movement. If the culvert cannot be installed without dewatering and the ponds cannot be lowered sufficiently, it may be necessary to install temporary sheeting to construct the culverts.

Construction of the new roadway will require that the new embankment extend out into the existing ponds. Where the embankment extends into the ponds, the near shore sediment should be excavated 12" to 18" and a stabilization stone placed (CA-1) in the water. The stabilization stone should be placed to the high water line to minimize embankment erosion concerns.

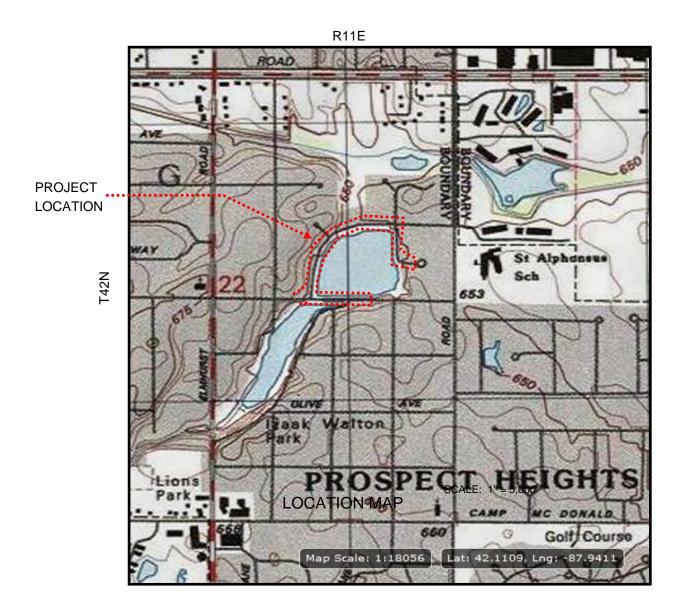
GENERAL QUALIFICATIONS

The analysis and recommendations presented in this report are based upon the data obtained from the soil borings performed at the indicated locations and from any other information discussed in this report. This report does not reflect any variations which may occur between borings or across the site. In addition, the soil samples cannot be relied on to accurately reflect the strata variations that usually exist between sampling locations. The nature and extent of such variations may not become evident until construction. If variations appear evident, it will be necessary to reevaluate the recommendations of the report.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are intended or made. The scope of service provided by O'Brien & Associates, Inc. specifically excludes the investigatory and engineering activities required to form opinions about the presence or absence of hazardous or toxic materials in the site's soil, surface water ground water, or air. Also note that O'Brien & Associates, Inc. is not responsible for any claims, damages, or liability associated with any other party's interpretation of this report's subsurface data or reuse of the report's' subsurface data or engineering analyses without the express written authorization of O'Brien & Associates, Inc.

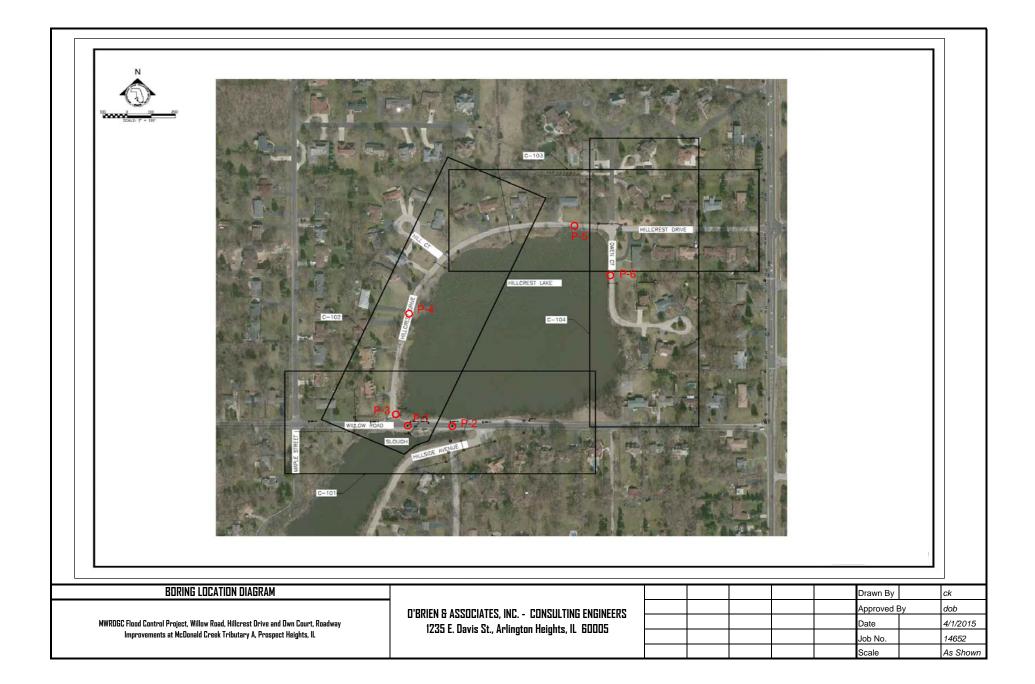
- 14 -

April 3, 2015


Job No. 14652

APPENDIX A

Location Map


PLANS FOR PROPOSED

MWRDGC Flood Control Project, Willow Road, Hillcrest Drive and Owen Court Roadway Improvements at McDonald Creek Tributary A, Prospect Heights, Illinois COOK COUNTY OBA JOB NO.: 14652

APPENDIX B

Boring Location Diagram

APPENDIX C

Boring Logs and General Notes

				LOG OF B	ORIN	IG NO.	P-1				
CLIE Glob	NT etro	otte	rs		BOR Stat Offs	ion: 10	ATION: W 14+60 one	/illow Ro	bad		
PRO TAS	JEC K 1	CT L 1: V	_OC Villo	ATION w Road, Prospect Heights, IL	PROJECT DESCRIPTION Prelimiinary Engineering for a Flood Control Project-McDonald Creek Tributary, MWRDGC, Prospect Heights, II						
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL GROUND SURFACE ELEVATION 650		X STANDARD PENETRATION "N"	Qp (tsf)	<u>Qu</u> Qu (tsf)	E MOISTURE CONTENT	unit DRY WEIGHT	REMARKS
	1	AS		5.0" ASPHALT, 5.0" CRUSHED STONE FILL							
	2	ss		MISC. CLAY FILL w/SAND, GRAVEL, trace brick, broken concrete and topsoil- loose to dense		9	2.25	1.8	21	107	xx
5.0	3	ss				38			14		
	4	ss				24			21		
10.0	5	ss		wet	\bigtriangledown	5			31		
	6	ss		SEDIMENTARY PEAT		2	0.75		144		
15.0	7	ss				0	1.0		168		
	8	ss				2	0.25		105		
20.0	9	ss		ORGANIC CLAY—gray— soft wet		2	0.5		62		
	10	ss				2	0.5		66		
25.0	11	ss		SANDY CLAY LOAM-gray- medium stiff wet		4	0.75		26		
	12	ss		SILTY LOAM-gray- medium dense		10			20		
30.0	13	SS		CLAY—gray— very stiff END OF BORING		11	2.25		22		
	r Le r Le	evel evel	Whi Aft	EVEL OBSERVATIONS le Drilling Dry er Boring -9.0' CONSULTING 1235 E. DAVIS ST./ARLI (847)398-1441 * F.	OCIA ENG	TS., IL 60005	C.	BORING RIG DRAWN		ETED Dec -55 FO AP	eember 9, 2014 eember 9, 2014 REMAN NW PROVED DOB IEET 1 OF 1

				LOG OF B	ORIN	IG NO.	P-2				
CLIE Glob	NT	otte	rs		BORING LOCATION: Willow Road Station: 106+50 Offset: none						
PRO TAS	JEC K 1	CT I 1: V	_OC Villo	ATION w Road, Prospect Heights, IL	PROJECT DESCRIPTION Prelimiinary Engineering for a Flood Control Project—McDonald Creek Tributary, MWRDGC, Prospect Heights, II						
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL GROUND SURFACE ELEVATION 650.		X STANDARD PENETRATION	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT	UNIT DRY WEIGHT	REMARKS
	1	AS		5.0" ASPHALT, 5.0" CRUSHED STONE FILL							
	2	ss		MISC. CLAY FILL w/SAND, GRAVEL- loose to dense		28			6		XX
5.0	3	ss				7	2.25		23		
	4	SS		PEAT		2			88		
10.0	5	ss		with shell	⊳ °	2			101		
	6	ss		CLAY—gray— stiff		7	1.25		21		
15.0	7	ss				9	1.25	1.3	20	109	
	8	ss		SANDY LOAM-gray- medium dense		14			20		
20.0	9	ss				11			20		
	10	ss				10			18		
25.0	11	ss				14			21		
	12	ss				12			17		
30.0	13	SS		SILTY LOAM-gray- medium dense END OF BORING		29			14		
Wate	r Le r Le	evel evel	Wh Aft	END OF BORING	OCIA ENG	TS., IL 60005	C.	BORIN RIG DRAW		TED Dec -55 FO	ember 9, 2014 ember 9, 2014 REMAN NW PROVED DOB IEET 1 OF 1

				LOG OF BO	RING NO.	P-3				
CLIE Glob		otte	rs		BORING LOC Station: 20 Offset: 14	ATION: H 00+40 I.O'Right	lillcrest	Drive		
				ATION	PROJECT DESCRIPTION Supplemental Investigation for Flood Control Project-McDonald Creek Tributary, MWRDGC, Prospect Heights, II					
		Γ	Π			ry, MWRD	GC, Pros	pect Heig	hts, II	
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL	STANDARD PENETRATION	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
	1	AS		8.0" ASPHALT						
	2	ss		CRUSHED STONE/GRAVEL FILL	5			8		
	3	ss		CLAY—dark brown— very stiff Fill	41	2.0		20		
5.0		F		CRUSHED CONCRETE FILL-dense		2.0				
	4	ss		CLAY-dark brown- soft wet	4	0.5		26		
10.0	5	ss		PEAT to ORGANIC CLAY w/shells in places— soft to very soft (PT)	2	0.5		219		
	6	ss		~	7 0	<0.25		145	34	
15.0	7	ss			1	<0.25		143		
	8	ss			0	<0.25		115	40	
20.0	9	ss			2	<0.25	0.4	72	57	
	10	ss			0	<0.25	0.4	64	62	
25.0	11	ss			0	<0.25	0.3	78	54	
	12	ss			0	<0.25	0.3	39	82	
30.0	13	SS		SILTY CLAY-gray- very stiff END OF BORING	9	2.75		17		
Water	r Le r Le	evel evel	Wh Aft	END OF BORING	CIATES, IN ENGINEERS	C.	BORIN RIG DRAW	G STARTE G COMPLE B-5 N VPB IOB No. 14	ETED Feb 57 FO 3 AP	ruary 20, 2015 ruary 20, 2015 REMAN TZ PPROVED DOB IEET 1 OF

				LOG OF BOF	RING N	10.	P-4				
CLIE Glob		otte	rs		BORING LOCATION: Hillcrest Drive Station: 204+00 Offset: 7.0' Right						
				ATION P w Road, Prospect Heights, IL S C	PROJECT DESCRIPTION Supplemental Investigation for Flood Control Project-McDonald Creek Tributary, MWRDGC, Prospect Heights, II						ect-McDonald
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL	STANDARD PENETRATION	"N"	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
				GROUND SURFACE ELEVATION 650.6	Ň						
	1	AS		6.0" ASPHALT, 3.0" CRUSHED STONE FILL							
	2	ss		CLAY—brown— hard A—6 limits/grain size pending	1.	1	4.5		18		
5.0	3	ss		SANDY LOAM-brown- loose	7	•			22		
	4	ss		CLAY—gray— very stiff	6		2.0		12		
10.0	5	ss			8		2.5		14		
	14/ 4			END OF BORING	<u> </u>			DODIN	G STARTE	.D C.r	rugev 20 2015
Wate					4			_	G COMPLE		oruary 20, 2015 oruary 20, 2015
				er Boring -6.0' O'BRIEN & ASSO	CLATES	. IN	IC	RIG	B-5		REMAN TZ
				CONSULTING E 1235 E. DAVIS ST. /ARUNG	ENGINE	ERS	5	DRAW			PROVED DOB
	0.0'			1235 E. DAVIS SI, ARUNG (847)398-1441 * FAX(i Associates, Inc.	847) 398-23	76		OBA J	OB No. 1	4652 S⊦	IEET 1 OF 1

				LOG OF BC	RIN	G NO.	P-5				
	betro				BORING LOCATION: Hillcrest Drive Station: 213+50 Offset: 7.0' Right						
				ATION w Road, Prospect Heights, IL	Supp	lemental	SCRIPTIC Investiga Iry, MWRD	tion for I	Flood Cor bect Heig	ntrol Proj hts, II	ect-McDonald
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL		STANDARD PENETRATION "N"	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
				GROUND SURFACE ELEVATION 650.6	;	ŝ					
	1	AS		6.0" ASPHALT, 3.0" CRUSHED STONE FILL							
	2	ss		CLAY-brown- hard A-6 wet		17	4.5+		27		
		-									
5.0	3	SS		PEAT to ORGANIC CLAY w/shells- very soft		4	<0.25	0.2	56	67	
	4	ss		Torvane © -7.0' Shear Strength = 400psf		0	<0.25	0.3	52	70	
10.0	5	ss		CLAY—gray— soft to medium stiff wet		4	1.0	0.4	29	95	
				END OF BORING							
					A	<u> </u>			G STARTE		oruary 20, 2015
				er Boring Dry			. ~	RIG	G COMPLE B-5		oruary 20, 2015 REMAN TZ
wate	i Le	vei	AIL	er Boring Dry V O'BRIEN & ASSO CONSULTING)CIA ENC	ATES, IN HINEERS	IC. S	DRAW			PROVED DOB
				1235 E. DAVIS ST./ARLIN (847)398–1441 * FA	GTON H	TS., IL 60005			OB No. 1		IEET 1 OF 1

				LOG OF BO	RING NO.	P-6				
CLIE Glob		otte	rs		BORING LOC Station: 3 Offset: 6	ATION: (03+60 .0'Right	Owen Co	ourt		
PRO TAS	JEC K 1	CT L 1: V	_OC /illo	ATION	PROJECT DE	SCRIPTIC)N tion for GC, Prosj	Flood Cor pect Heig	ntrol Proje hts, II	ect-McDonald
DEPTH (ft.) BELOW GROUND SURFACE	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL GROUND SURFACE ELEVATION 648.7	STANDARD PENETRATION	Qp (tsf)	Qu (tsf)	MOISTURE CONTENT (%)	UNIT DRY WEIGHT (pcf)	REMARKS
	1	AS		4.0" ASPHALT, 18" CRUSHED STONE FILL						
	2	SS		SILTY CLAY LOAM—brown & gray— hard A—4 Fill	22	4.0		17		
5.0	3	ss		CRUSHED STONE FILL-medium dense	15			7		
	4	ss		Torvane @ −7.0' Shear Strength = 810psf ORGANIC CLAY-brown & gray, spotted black-	4	0.5	0.5	24	102	
10.0	5	ss		medium stiff Torvane @ -9.0' Shear Strength = 1,120psf we	et 4	1.0	0.7	27	98	
	6	SS		Torvane @ −12.0' Shear Strength = 400psf	2	<0.25	0.3	320	16	
15.0	7	ss		Torvane @ −14.0' Shear Strength = 300psf	0	<0.25	0.2	210	23	
	8	ss		PEAT to ORGANIC CLAY w/shells in places— soft to very soft (PT)	0	<0.25	0.4	240	22	
20.0	9	ss		Torvane @ −20.0' Shear Strength = 400psf	0	<0.25		190		
	10	ss		Torvane @ −22.0' Shear Strength = 300psf	1	<0.25		60		
25.0	11	ss		Torvane @ −24.0' Shear Strength = 360psf	1	<0.25	0.3	56	66	
	12	ss		CLAY-gray- medium stiff to stiff	5	1.0	0.7	22	106	
30.0	13	SS			7	1.5		20		
	WA	ATER	۲.LE	END OF BORING			BORIN	G STARTE	D Feb	ruary 20, 2015
Wate	r Le	evel	Wh	ile Drilling -3.5'			BORIN	G COMPLI		ruary 20, 2015
Wate	r Le	evel	Aft	er Boring -5.0'	<u>, ATES</u> , D	E.	RIG	B-5		REMAN TZ
					TON HTS., IL 60005	y. —	DRAW			PROVED DOB
				1235 E. DAVIS ST./ARLING (847)398-1441 * FAX(Associates, Inc.	ION HIS., IL 60005 847) 398-2376		OBA 、	IOB No. 1	4652 SH	EET 1 OF 1

GENERAL NOTES

CLASSIFICATION

Chicago Building Code Textural Soil Classifications and Unified Soil Classifications are used.

Cohesionless Soils

Relative <u>Density</u>	No. of Blows per foot N
Very Loose Loose	0 to 4 4 to 10
Medium	10 to 30
Dense	30 to 50
Very Dense	Over 50

TERMINOLOGY

Streaks are considered to be paper thick. **Lenses** are considered to be less than 2 inches thick. **Layers** are considered to be 6 inches or less thick. **Stratum** are considered to be greater than 6 inches thick.

Cohesive Soils

<u>Consistency</u>	Unconfined Compressive Strength - qu (tsf)
Very Soft	Less than 0.25
Soft	0.25 - 0.5
Medium	0.5 - 1.0
Stiff	1.0 - 2.0
Very Stiff	2.0 - 4.0
Hard	Over 4.0

DRILLING AND SAMPLING SYMBOLS

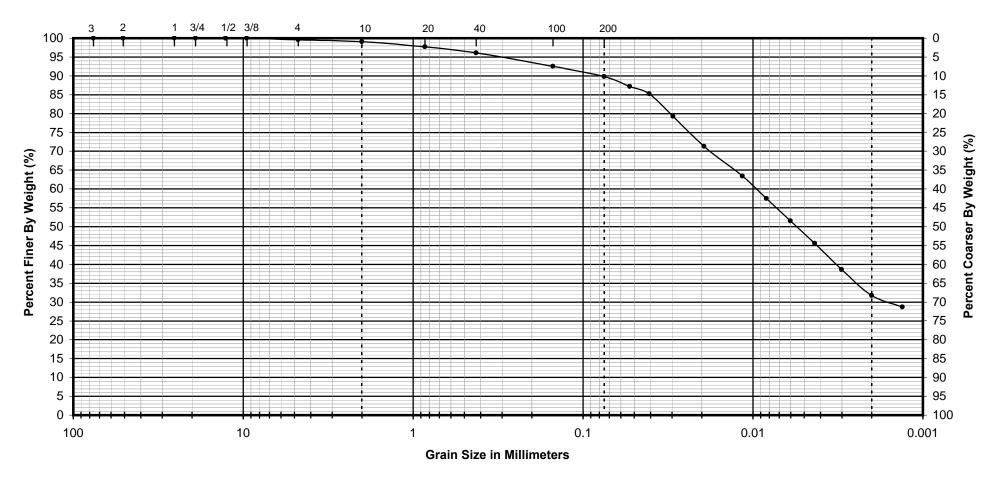
- SS: Split Spoon 1-3/8" I.D., 2" O.D.
- ST: Shelby Tube 2" O.D., except where noted
- AS: Auger Sample
- DB: Diamond Bit NX: BX: AX
- CB: Carboloy Bit NX: BX: AX
- OS: Osterberg Sampler

HS: Housel Sampler WS: Wash Sample FT: Fish Tail RB: Rock Bit WO: Wash Out

Standard "N" Penetration: Blows per foot of a 140 lb. hammer falling 30" on a 2" O.D. Split Spoon

WATER LEVEL MEASUREMENT SYMBOLS

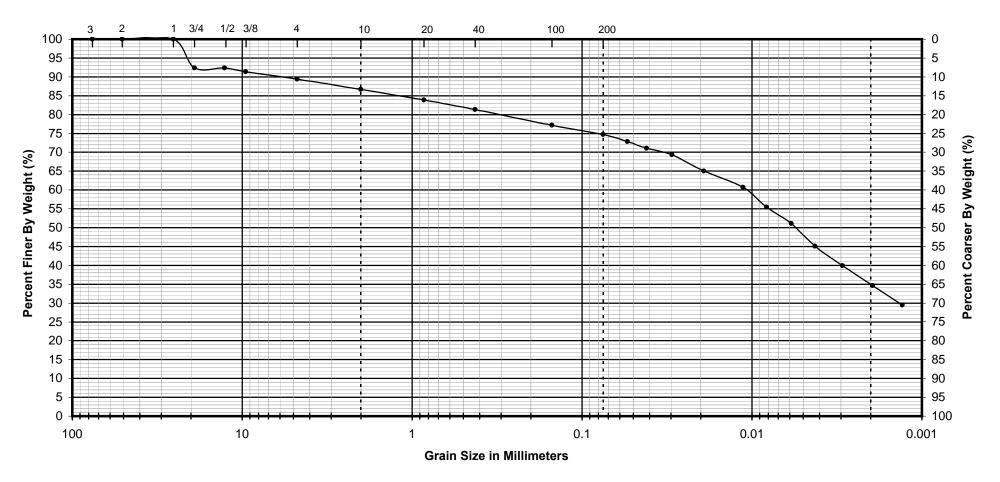
- WL: Water WCI: Wet Cave In DCI: Dry Cave In
- WS : While sampling


- WD: While Drilling
- BCR: Before Casing Removal
- ACR: After Casing Removal
 - AB: After Boring

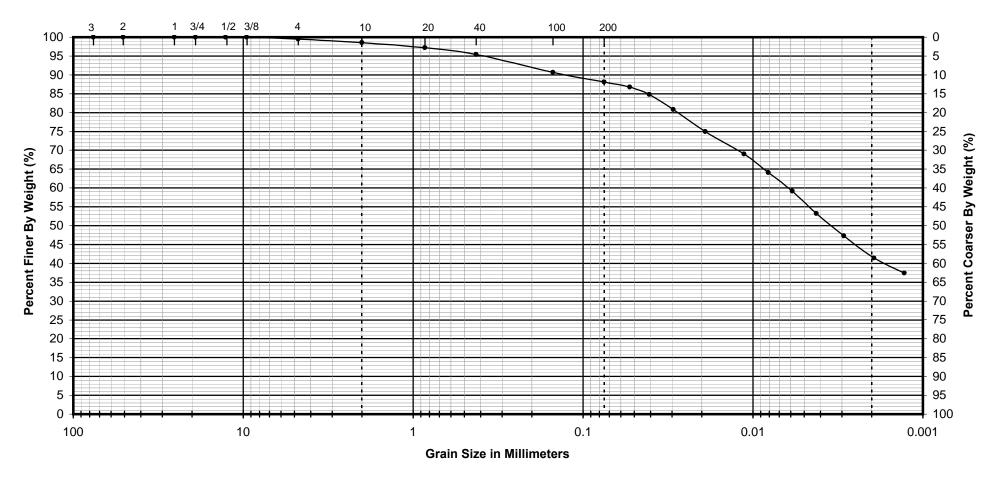
Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several day's observation, and additional evidence on ground water elevations must be sought.

O'BRIEN	&	ASSOCIATES,	INC.
O'BRIEN	&	ASSOCIATES,	INC.

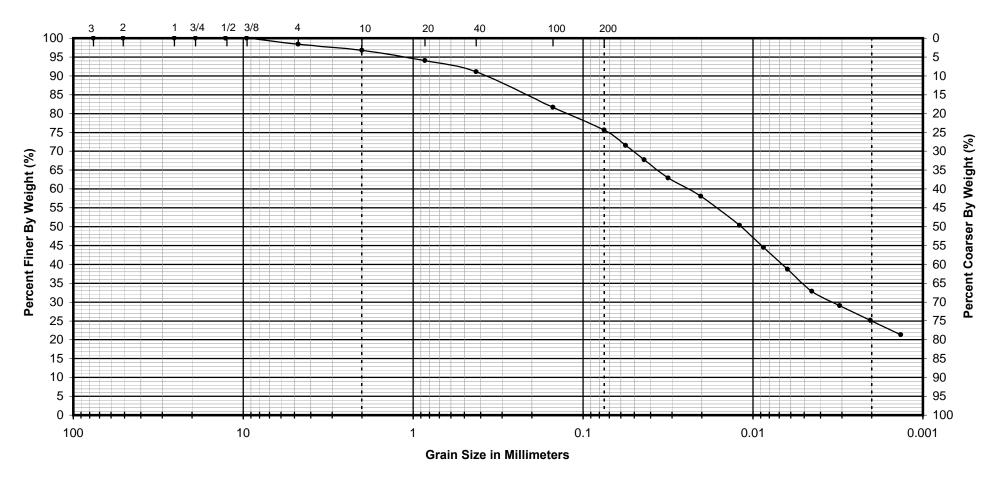
APPENDIX D


Laboratory Test Results

GRAVEL	S	AND	SILT	
GRAVEL	COARSE	FINE	SILI	CLAT


Boring No.	P-1	CLASSIFIC	ATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	2			
Depth	1.0'-2.5'	SILTY CI	_AY	MWRDGC Flood Control Project
Liquid Limit	36	A-6		Willow Road at McDonald Creek
Plastic Limit	20	browr	า	Prospect Heights, Illinois
Plasticity Index	16	Group Index	14	
Test By	JE	% Gravel	0.9	O'BRIEN & ASSOCIATES, INC.
Date	4/1/15	% Sand	9.3	1235 East Davis Street
Reviewed By	DOB	% Silt	58.1	Arlington Heights, IL 60005
Job No	14652	% Clay	31.7	Phone 847-398-1441 • Fax 847-398-2376

—— O'BRIEN & ASSOCIATES, INC. –


CRAVEL	S	AND	SILT	
GRAVEL	COARSE	FINE	SILI	CLAT

Boring No.	P-4	CLASSIFIC	ATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	2			
Depth	1.0'-2.5'	CLAY	,	MWRDGC Flood Control Project
Liquid Limit	33	A-6		Willow Road at McDonald Creek
Plastic Limit	16	browr	ı	Prospect Heights, Illinois
Plasticity Index	17	Group Index	11	
Test By	JE	% Gravel	13.3	O'BRIEN & ASSOCIATES, INC.
Date	4/1/15	% Sand	12.0	1235 East Davis Street
Reviewed By	DOB	% Silt	40.0	Arlington Heights, IL 60005
Job No	14652	% Clay	34.7	Phone 847-398-1441 • Fax 847-398-2376

GRAVEL	S	AND	SILT	
GRAVEL	COARSE	FINE	SILI	CLAT

Boring No.	P-5	CLASSIFICA	TION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	2			
Depth	1.0'-2.5'	CLAY		MWRDGC Flood Control Project
Liquid Limit	40	A-6		Willow Road at McDonald Creek
Plastic Limit	22	brown		Prospect Heights, Illinois
Plasticity Index	18	Group Index	16	
Test By	JE	% Gravel	1.4	O'BRIEN & ASSOCIATES, INC.
Date	4/1/15	% Sand	10.4	1235 East Davis Street
Reviewed By	DOB	% Silt	46.7	Arlington Heights, IL 60005
Job No	14652	% Clay	41.4	Phone 847-398-1441 • Fax 847-398-2376

GRAVEL	S	AND	SILT			
GRAVEL	COARSE	FINE	SILI	CLAY		

Boring No.	P-6	CLASSIFIC	ATION	PARTICLE SIZE ANALYSIS-AASHTO T88
Sample No.	2			
Depth	1.0'-2.5'	SILTY CLAY	LOAM	MWRDGC Flood Control Project
Liquid Limit	27	A-4		Willow Road at McDonald Creek
Plastic Limit	18	brown	า	Prospect Heights, Illinois
Plasticity Index	9	Group Index	5	
Test By	JE	% Gravel	3.3	O'BRIEN & ASSOCIATES, INC.
Date	4/1/15	% Sand	21.1	1235 East Davis Street
Reviewed By	DOB	% Silt	50.5	Arlington Heights, IL 60005
Job No	14652	% Clay	25.2	Phone 847-398-1441 • Fax 847-398-2376

O'BRIEN & ASSOCIATES. INC.

CONSULTING ENGINEERS

1235 E. DAVIS STREET ARLINGTON HEIGHTS, ILLINOIS 60005 (847) 398-1441 FAX (847) 398-2376

Liquid Limit, Plastic Limit, and Plasticity Index of Soils AASHTO T89/T90

Project Name MWRDGC Flood Control Project at McDonald Creek	Job No 14652	

Location Willow Road, Prospect Heights, Illinois

Date 4/1/15

Client Globetrotters

Boring No./Sample No.	P-1/S-2	P-4/S-2	P-5/S-2	P-6/S-2		
Depth	1.0'-2.5'	1.0'-2.5'	1.0'-2.5'	1.0'-2.5'		
LIQUID LIMIT (LL)	36	33	40	27		
PLASTIC LIMIT (PL)	20	16	22	18		
PLASTICITY INDEX (PI)	16	17	18	9		

Tested by TOB

O'BRIEN & ASSOCIATES, INC. 1235 E. DAVIS STREET ARLINGTON HEIGHTS, IL 60005 (847) 398-1441 FAXES (847) 398-2376

DETERMINATION of ORGANIC CONTENT in SOILS by LOSS on IGNITION AASHTO T267

Project Name MWRDGC Flood Control Project Willow Road at McDonald Creek	Date	4/2/15
Location Prospect Heights, Illinois	Job No	14652

Boring No	P-1	P-2	P-3	P-3	P-5	P-6	P-6
Sample No.	7	4	6	9	4	7	10
Depth	13.5'-15.0'	6.0'-7.5'	11.0'-12.5'	18.5'-20.0'	6.0'-7.5'	13.5'-15.0'	21.0'-22.5'
Sample Description	Peat	Peat	Peat	Peat to Organic Clay	Peat to Organic Clay	Peat	Peat to Organic Clay
% Organic Content	14.7	11.3	13.1	7.3	6.9	28.7	6.6

Tested By JE

APPENDIX E

Patrick Engineering and Layne-Western Co. Boring Logs

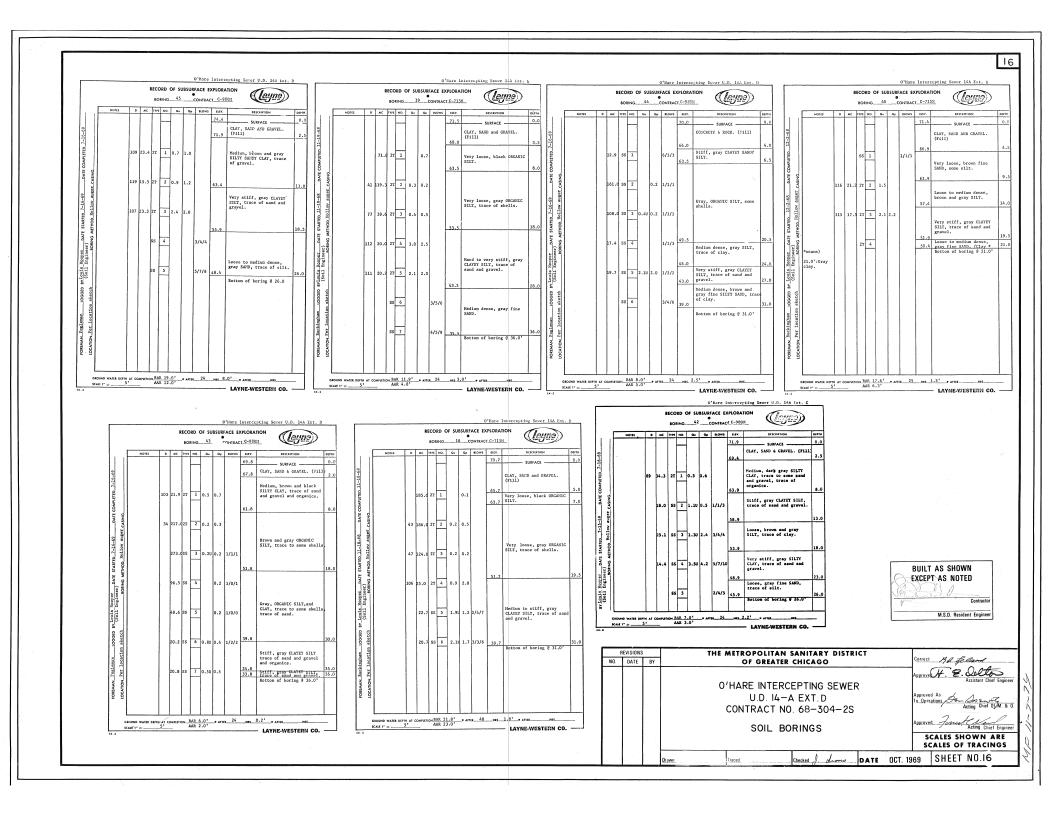
		ATRICK ENGINEERING INC. BORING NUMBER B-1 SHEET 1 CLIENT Cook County Highway Department PROJECT & NO. 20708.025 LOCATION S. Side of Willow Rd, Prospect Height								ment	OF hts, IL	
	ED B		AFG ATION 648.8									
ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW COUNTS	PL	Water Con 	→ → Ll 30 40	50	IOTES & RESI	
648.8	0.0		Grayish brown silty clay, trace to coarse sand, low plasticity, s moist	fine stiff, CL	SS-1 1.0-2.5 R=10"	3 4 4		16 O I		qu=2.	Otsf"	*8
644.5	4.3		Black silty clay, some fine to co sand, wood fragments, wet		SS-2 3.5-5.0 R=14"	433		17 0				
642.8	6.0		Light gray silty clay with organic little fine sand, trace shell fragments, soft, wet	CL cs, CL/OL	SS-3 6.0-7.5 R-18"	1 1 1	10			qu=0.5 WC=1		
638.3	10.5				SS-4 8.5-10.0 R=16"	1 1 1				qu=0.7 WC=7		
			Gray / brown silty clay, trace co sand, medium plasticity, stiff, m	oist CL	SS-5 11.0-12.5 R=15"	2 3 3		21		qu=1.7	5tsf*	
			2" fine sand seam		SS-6 13.5-15.0 R=18"	3 5 6				qu=2.0	tsf*	
			Multiple fine sand seams, satura	ited	SS-7 18.5-20.0 R=17"	3 3 3				qu=1.75	itsf*	
RILLIN RILLIN	g me ⁻ g eqi	thoi Jipm			ARKS og backfilled ogs	with :	soil	U WATER LI V N/A V N/A	EVEL (ft.)		<u></u>	

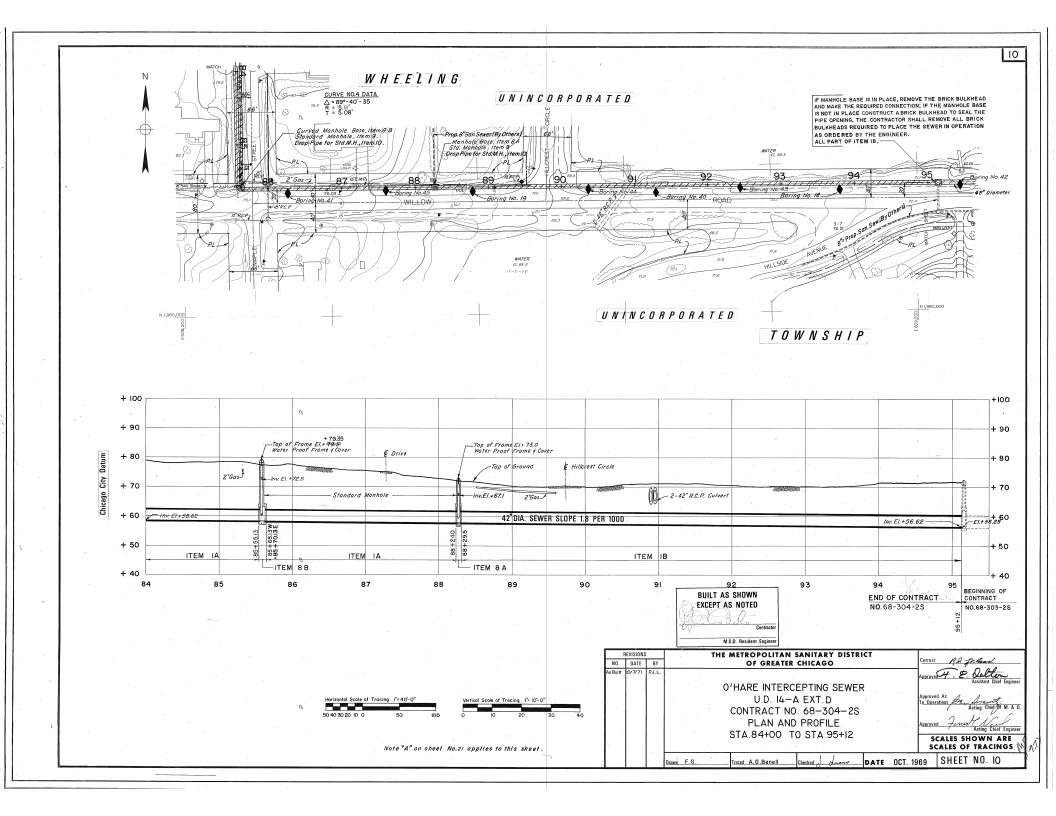
P	ΆΤΙ	RICK	ENGINEERING INC.	BORING NUMBERB-1SHEET2CLIENTCook County Highway DepartmentPROJECT & NO.20708.025LOCATIONS. Side of Willow Rd, Prospect He						ient
	· •	BY ELEVA	AFG							
ELEV.	DEPTH (FT)	4	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW COUNTS	PL U	10 20 Inconfined C	∆ LL 30 40 5	NOTES & TEST RESULTS
628.8 627.3			Gray / brown silty clay, trace c sand, medium plasticity, stiff, r Gray / brown silty fine sand, saturated	oarse noist CL		2				
624.5	24.3		Gray / brown silty clay, very st low plasticity	iff, CL	SS-8 23.5-25.0 R=18"	8 10 13		28		qu=3.5tsf*
621.8	27.0		Gray / brown silty fine sand, tra coarse gravel, saturated	 3Ce						
619.8	29.0		Gray / brown silty clay, trace co sand, medium plasticity, very s moist	oarse tiff, CL	SS-9 28.5-30.0 R=18"	4 4 6		/ 14 0 1		qu=2.5tsf*
616.8	32.0		Gray / brown silty fine sand, saturated						e	
614.8	34.0		Gray / brown silty clay, trace co sand, medium plasticity, moist	oarse CL	SS-10 33.5-35.0 R=6"	3 5 12		22 O		
511.8	37.0		Light gray / tan fine sand, medie dense	um						
08.8	40.0	· · · · · · · · · · · ·	End of Boring at 40.0'		SS-11 38.5-40.0 R=18"	7 9 12				
RILLIN RILLIN	NG M NG E	ethoi Quipm			ARKS ng backfilled ngs	with	soil	WATER V NA V NA	LEVEL (ft.)	

Ţ

F	PAT	RI	CK	ENGINEERING INC.	CLIEN	CT & NO.	Cool 2070	B-2 SHEET 1 OF 2 ok County Highway Department 708.025 . Side of Willow Rd, Prospect Heights, IL
LOG				AFG			14. 1	
GRO		ELE		TION 649.7				Water Content
ELEV.	DEPTH	1 - 1 /	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	SLOW SLOW	
649.7		00 7°(8" CA-6				
649.0 ì				Dark gray and black silty clay, fine to coarse sand, trace coa gravel, medium plasticity, very moist	rse	SS-1 1.0-2.5 R=16"	5 6 7	P '
645.5 644.7	4. 5.	300		Trace roots Rock fragments	/	SS-2 3.5-5.0 R=12"	7 21 22	
643.5	6.			Brown / gray silty clay, some f coarse sand, moist to wet	ine to CL		40	
_				Fine to coarse sand and grave trace black clay, wet to satural	el,	- SS-3 6.0-7.5 R=8"	12 13 12	
641.7	8.0	N.	- 1	Black / dark brown peat, soft, v				
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2		PT	SS-4 8.5-10.0 R=8"	2 1 2	⁰ WC-288%
638.7	11.0		1	Gray silty clay with organics, s roots and shell fragments, very moist to wet	ome v soft, CL/OL	SS-5 11.0-12.5 R=18"	WОН	
						SS-6 13.5-15.0 R=18"	W O H	qu=0.25tsf WC=163%
632.7	17.0			Black silty clay with organics, v	егу			
				soft, moist	CL/OL	SS-7 18.5-20.0	W O H	qu=0.25tsf ₩C=66%
DRILLII DRILLII DRILLII	NG M NG È	IETI QUI	-IO[PM			ARKS ng backfilled ngs	with	h soil ▼ N/A ▼ N/A ▼

PATRICK ENGINEERING INC.


BORING NUMBER CLIENT PROJECT & NO. LOCATION B-2 SHEET 2 OF 2 Cook County Highway Department 20708.025


N. Side of Willow Rd, Prospect Heights, IL

LOGGED BY AFG GROUND ELEVATION 649.7

GROU	JND ELL		HON 649.7					_				
ELEV.		STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL (Ur		er Con o 3 ed Com ngth (T	<u>-</u> ^	0 50 /e	NOTES & TEST RESULTS
629.7	20.0			ery CL/OL								
			4" seam silty fine sand		SS-8 23.5-25.0 R=18"	₩он						qu=0.25tsf WC=82%
622.7	27.0		Gray silty clay, little coarse sand very soft, medium plasticity, mo to wet	d, ist CL	SS-9 28.5-30.0 R=18"	0 0 3		16, 0- 				qu=0.25tsf
617.7	32.0		Brown / gray silty clay, trace coa sand, medium plasticity, very sti moist	arse iff, CL	SS-10 33.5-35.0 R=16"	4 6 7		10				qu=2.5tsf
	37.0		Gray / brown silty fine sand, medium dense, saturated End of Boring at 40.0'	SM	SS-11 38.5-40.0 R=18"	3 7 6						×
DRILLIN DRILLIN	NG CON NG METI NG EQUI NG STAF	hod Ipme	2.25" HSA		ARKS ng backfilled n ngs	with	soil	WAT ⊈N/ ⊈N/	Α	EVEL	<u>(ft.)</u>	

HILGREST DRIVE			O 15' 30' GRAPHIC SCALE 1"=30'
	EAST WILLOW ROAD		BORING NUMBER DEPTH
			AERIAL PHOTO SOURCE:
Date: APRIL 2008	FIGURE 1		Google Earth TM mapping service
Proj No.: 20708.025	BORING LOCATION PLAN	PATR	ICK
Арр. Ву: DE	COOK COUNTY DEPT. OF HIGHWAYS PROSPECT HEIGHTS, IL	4970 Varsity Drive Liste, Illinois 60532-4101 PROFESSIONAL DESIGN FIRM LICE	TEL. (630) 795-7200 FAX (630) 724-1691

